Usefulness of an artificial intelligence system for the detection of esophageal squamous cell carcinoma evaluated with videos simulating overlooking situation.

人工智能 医学物理学
作者
Kotaro Waki,Ryu Ishihara,Yusuke Kato,Ayaka Shoji,Takahiro Inoue,Katsunori Matsueda,Muneaki Miyake,Yusaku Shimamoto,Hiromu Fukuda,Noriko Matsuura,Yoichiro Ono,Kenshi Yao,Satoru Hashimoto,Shuji Terai,Masayasu Ohmori,Kyosuke Tanaka,Motohiko Kato,Takashi Shono,Hideaki Miyamoto,Yasuhito Tanaka,Tomohiro Tada
出处
期刊:Digestive Endoscopy [Wiley]
卷期号:33 (7): 1101-1109 被引量:2
标识
DOI:10.1111/den.13934
摘要

Objectives Artificial intelligence (AI) systems have shown favorable performance in the detection of esophageal squamous cell carcinoma (ESCC). However, previous studies were limited by the quality of their validation methods. In this study, we evaluated the performance of an AI system with videos simulating situations in which ESCC has been overlooked. Methods We used 17,336 images from 1376 superficial ESCCs and 1461 images from 196 noncancerous and normal esophagi to construct the AI system. To record validation videos, the endoscope was passed through the esophagus at a constant speed without focusing on the lesion to simulate situations in which ESCC has been missed. Validation videos were evaluated by the AI system and 21 endoscopists. Results We prepared 100 video datasets, including 50 superficial ESCCs, 22 noncancerous lesions, and 28 normal esophagi. The AI system had sensitivity of 85.7% (54 of 63 ESCCs) and specificity of 40%. Initial evaluation by endoscopists conducted with plain video (without AI support) had average sensitivity of 75.0% (47.3 of 63 ESCC) and specificity of 91.4%. Subsequent evaluation by endoscopists was conducted with AI assistance, which improved their sensitivity to 77.7% (P = 0.00696) without changing their specificity (91.6%, P = 0.756). Conclusions Our AI system had high sensitivity for the detection of ESCC. As a support tool, the system has the potential to enhance detection of ESCC without reducing specificity. (UMI39645).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巴巴拉拉巴拉完成签到 ,获得积分10
3秒前
曾经的慕灵完成签到,获得积分10
15秒前
mark33442完成签到,获得积分10
16秒前
Bake完成签到 ,获得积分10
18秒前
fyjlfy完成签到 ,获得积分10
19秒前
Ding-Ding完成签到,获得积分10
19秒前
stiger完成签到,获得积分10
20秒前
lhn完成签到 ,获得积分10
20秒前
新奇完成签到 ,获得积分10
21秒前
宁小源的源完成签到 ,获得积分0
26秒前
26秒前
现实的曼安完成签到 ,获得积分10
33秒前
39秒前
40秒前
drjim发布了新的文献求助10
40秒前
byb发布了新的文献求助10
45秒前
加油完成签到 ,获得积分10
49秒前
liciky完成签到 ,获得积分10
49秒前
脑洞疼应助科研通管家采纳,获得20
55秒前
安详的自中完成签到,获得积分20
58秒前
小马甲应助rash采纳,获得10
1分钟前
drizzling完成签到,获得积分10
1分钟前
kanong完成签到,获得积分0
1分钟前
SCI的芷蝶完成签到 ,获得积分10
1分钟前
糊涂的青烟完成签到 ,获得积分10
1分钟前
yz完成签到,获得积分10
1分钟前
胖胖完成签到 ,获得积分0
1分钟前
权小夏完成签到 ,获得积分10
1分钟前
淡定的思松完成签到 ,获得积分10
1分钟前
风不尽,树不静完成签到 ,获得积分10
1分钟前
吉吉国王完成签到 ,获得积分10
1分钟前
Eri_SCI完成签到 ,获得积分10
1分钟前
猫的毛完成签到 ,获得积分10
1分钟前
1分钟前
仲夏夜之梦完成签到,获得积分10
1分钟前
森淼完成签到 ,获得积分10
1分钟前
1分钟前
drjim发布了新的文献求助10
1分钟前
sydhwo完成签到 ,获得积分0
2分钟前
赵婷完成签到,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526639
求助须知:如何正确求助?哪些是违规求助? 3107025
关于积分的说明 9282163
捐赠科研通 2804690
什么是DOI,文献DOI怎么找? 1539568
邀请新用户注册赠送积分活动 716599
科研通“疑难数据库(出版商)”最低求助积分说明 709581