已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Can Reputation Discipline the Gig Economy? Experimental Evidence from an Online Labor Market

声誉 业务 质量(理念) 产品(数学) 审计 工作(物理) 劳动经济学 经济 营销 法学 会计 政治学 工程类 机械工程 哲学 几何学 数学 认识论
作者
Alan Benson,Aaron Sojourner,Akhmed Umyarov
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:66 (5): 1802-1825 被引量:104
标识
DOI:10.1287/mnsc.2019.3303
摘要

Just as employers face uncertainty when hiring workers, workers also face uncertainty when accepting employment, and bad employers may opportunistically depart from expectations, norms, and laws. However, prior research in economics and information sciences has focused sharply on the employer’s problem of identifying good workers rather than vice versa. This issue is especially pronounced in markets for gig work, including online labor markets, in which platforms are developing strategies to help workers identify good employers. We build a theoretical model for the value of such reputation systems and test its predictions on Amazon Mechanical Turk, on which employers may decline to pay workers while keeping their work product and workers protect themselves using third-party reputation systems, such as Turkopticon. We find that (1) in an experiment on worker arrival, a good reputation allows employers to operate more quickly and on a larger scale without loss to quality; (2) in an experimental audit of employers, working for good-reputation employers pays 40% higher effective wages because of faster completion times and lower likelihoods of rejection; and (3) exploiting reputation system crashes, the reputation system is particularly important to small, good-reputation employers, which rely on the reputation system to compete for workers against more established employers. This is the first clean field evidence of the effects of employer reputation in any labor market and is suggestive of the special role that reputation-diffusing technologies can play in promoting gig work, in which conventional labor and contract laws are weak. This paper was accepted by Chris Forman, information science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qzliyulin发布了新的文献求助10
1秒前
2秒前
2秒前
EE完成签到 ,获得积分10
3秒前
吴雨涛发布了新的文献求助10
3秒前
4秒前
zhouzhou发布了新的文献求助10
6秒前
桐桐应助Leo采纳,获得10
8秒前
等等发布了新的文献求助10
9秒前
wanci应助拉长的店员采纳,获得10
9秒前
111112完成签到,获得积分10
10秒前
10秒前
Orange应助科研的POWER采纳,获得10
10秒前
11秒前
孤巷的猫完成签到,获得积分10
12秒前
Dudu发布了新的文献求助10
13秒前
13秒前
14秒前
ltft完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
实验cat关注了科研通微信公众号
16秒前
于雷是我完成签到,获得积分10
17秒前
17秒前
zhang完成签到 ,获得积分10
18秒前
ltft发布了新的文献求助10
19秒前
19秒前
19秒前
吱吱吱完成签到 ,获得积分10
20秒前
olivia发布了新的文献求助10
21秒前
科目三应助沿海地带采纳,获得10
22秒前
英俊的铭应助HHH采纳,获得10
22秒前
22秒前
赘婿应助燊yy采纳,获得10
24秒前
Harish发布了新的文献求助10
24秒前
Shabby0-0完成签到,获得积分10
25秒前
111112发布了新的文献求助10
25秒前
南风似潇发布了新的文献求助10
26秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538721
求助须知:如何正确求助?哪些是违规求助? 3116413
关于积分的说明 9325163
捐赠科研通 2814274
什么是DOI,文献DOI怎么找? 1546563
邀请新用户注册赠送积分活动 720607
科研通“疑难数据库(出版商)”最低求助积分说明 712086