Game-Theoretic Planning for Self-Driving Cars in Multivehicle Competitive Scenarios

超车 弹道 计算机科学 运动学 纳什均衡 数学优化 模拟 工程类 数学 物理 土木工程 经典力学 天文
作者
Mingyu Wang,Zijian Wang,John M. Talbot,J. Christian Gerdes,Mac Schwager
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:37 (4): 1313-1325 被引量:92
标识
DOI:10.1109/tro.2020.3047521
摘要

In this article, we propose a nonlinear receding horizon game-theoretic planner for autonomous cars in competitive scenarios with other cars. The online planner is specifically formulated for a multiple-car autonomous racing game, in which each car tries to advance along a given track as far as possible with respect to the other cars. The algorithm extends previous work on game-theoretic planning for single-integrator agents to be suitable for autonomous cars in the following ways: 1) by representing the trajectory as a piecewise polynomial; 2) incorporating bicycle kinematics into the trajectory; and 3) enforcing constraints on path curvature and acceleration. The game-theoretic planner iteratively plans a trajectory for the ego vehicle and then the other vehicles in sequence until convergence. Crucially, the trajectory optimization includes a sensitivity term that allows the ego vehicle to reason about how much the other vehicles will yield to the ego vehicle to avoid collisions. The resulting trajectories for the ego vehicle exhibit rich game strategies such as blocking, faking, and opportunistic overtaking. The game-theoretic planner is shown to significantly outperform a baseline planner using model-predictive control, which does not take interaction into account. The performance is validated in high-fidelity numerical simulations with three cars, in experiments with two small-scale autonomous cars, and in experiments with a full-scale autonomous car racing against a simulated vehicle (video is available at https://youtube.com/playlist?list=PLmIcLEh8KMje4rYBqRANDuKvqFvj7LCRp).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mahaha完成签到,获得积分10
1秒前
草莓钙片完成签到,获得积分10
1秒前
ZZICU完成签到,获得积分10
2秒前
xiaoyang发布了新的文献求助10
2秒前
JamesPei应助个木采纳,获得10
3秒前
mahaha发布了新的文献求助10
5秒前
5秒前
bbbui完成签到 ,获得积分10
6秒前
深圳人在北京完成签到,获得积分20
6秒前
孤独天薇完成签到,获得积分10
8秒前
9秒前
Eourique完成签到,获得积分10
9秒前
10秒前
魔幻的盼芙完成签到,获得积分10
10秒前
11秒前
11秒前
Zzz完成签到,获得积分10
14秒前
222发布了新的文献求助10
14秒前
yxy发布了新的文献求助10
14秒前
Vision820发布了新的文献求助10
15秒前
小乔应助小陈不尘采纳,获得10
15秒前
科研通AI5应助齐齐齐采纳,获得10
16秒前
顺利白安完成签到,获得积分10
17秒前
17秒前
19秒前
20秒前
韩韩完成签到,获得积分10
20秒前
23秒前
冷傲山彤发布了新的文献求助10
24秒前
力劈华山完成签到,获得积分10
24秒前
25秒前
重要的天空完成签到 ,获得积分10
25秒前
27秒前
柔弱的半仙完成签到,获得积分20
28秒前
lili完成签到,获得积分10
29秒前
孤岛完成签到,获得积分10
30秒前
经钧完成签到 ,获得积分10
30秒前
齐齐齐发布了新的文献求助10
31秒前
Jasper应助天真大神采纳,获得10
31秒前
芷兰丁香发布了新的文献求助10
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737404
求助须知:如何正确求助?哪些是违规求助? 3281212
关于积分的说明 10023771
捐赠科研通 2997969
什么是DOI,文献DOI怎么找? 1644880
邀请新用户注册赠送积分活动 782390
科研通“疑难数据库(出版商)”最低求助积分说明 749782