WCE polyp detection with triplet based embeddings

计算机科学 胶囊内镜 人工智能 卷积神经网络 嵌入 深度学习 公制(单位) 特征(语言学) 计算机视觉 模式识别(心理学) 放射科 医学 运营管理 语言学 哲学 经济
作者
Pablo Laiz,Jordi Vitrià,Hagen Wenzek,Carolina Malagelada,Fernando Azpiroz,Santi Seguí
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:86: 101794-101794 被引量:20
标识
DOI:10.1016/j.compmedimag.2020.101794
摘要

Wireless capsule endoscopy is a medical procedure used to visualize the entire gastrointestinal tract and to diagnose intestinal conditions, such as polyps or bleeding. Current analyses are performed by manually inspecting nearly each one of the frames of the video, a tedious and error-prone task. Automatic image analysis methods can be used to reduce the time needed for physicians to evaluate a capsule endoscopy video. However these methods are still in a research phase. In this paper we focus on computer-aided polyp detection in capsule endoscopy images. This is a challenging problem because of the diversity of polyp appearance, the imbalanced dataset structure and the scarcity of data. We have developed a new polyp computer-aided decision system that combines a deep convolutional neural network and metric learning. The key point of the method is the use of the Triplet Loss function with the aim of improving feature extraction from the images when having small dataset. The Triplet Loss function allows to train robust detectors by forcing images from the same category to be represented by similar embedding vectors while ensuring that images from different categories are represented by dissimilar vectors. Empirical results show a meaningful increase of AUC values compared to state-of-the-art methods. A good performance is not the only requirement when considering the adoption of this technology to clinical practice. Trust and explainability of decisions are as important as performance. With this purpose, we also provide a method to generate visual explanations of the outcome of our polyp detector. These explanations can be used to build a physician's trust in the system and also to convey information about the inner working of the method to the designer for debugging purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王十三发布了新的文献求助10
1秒前
1秒前
自由灵枫完成签到,获得积分10
1秒前
yang完成签到,获得积分10
1秒前
NexusExplorer应助cloud采纳,获得10
2秒前
科目三应助天上的云在飘采纳,获得10
2秒前
2秒前
3秒前
熊大发布了新的文献求助30
3秒前
finerain7完成签到,获得积分10
4秒前
awesome发布了新的文献求助30
4秒前
4秒前
传奇3应助小汪采纳,获得10
5秒前
欣慰扬发布了新的文献求助10
5秒前
LJM完成签到,获得积分10
5秒前
yuk发布了新的文献求助10
5秒前
橘子星发布了新的文献求助10
5秒前
6秒前
WEN发布了新的文献求助10
6秒前
不会写诗完成签到 ,获得积分10
6秒前
可爱的函函应助OutMan采纳,获得10
7秒前
8秒前
丑丑虎发布了新的文献求助10
8秒前
乐乐乐乐乐乐应助chowjb采纳,获得10
9秒前
9秒前
Hang发布了新的文献求助10
9秒前
Lucy发布了新的文献求助10
9秒前
小魏完成签到,获得积分10
9秒前
xiezhuren发布了新的文献求助10
10秒前
隐形觅风完成签到,获得积分10
10秒前
吃个大西瓜完成签到,获得积分10
10秒前
10秒前
w_应助白菜包子采纳,获得10
10秒前
谢陈完成签到 ,获得积分10
10秒前
苗广山完成签到,获得积分10
11秒前
11秒前
12秒前
开心的傲南关注了科研通微信公众号
13秒前
Owen应助科研涛采纳,获得10
13秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227802
求助须知:如何正确求助?哪些是违规求助? 2875741
关于积分的说明 8192365
捐赠科研通 2542879
什么是DOI,文献DOI怎么找? 1373241
科研通“疑难数据库(出版商)”最低求助积分说明 646713
邀请新用户注册赠送积分活动 621181