WCE polyp detection with triplet based embeddings

计算机科学 胶囊内镜 人工智能 卷积神经网络 嵌入 深度学习 公制(单位) 特征(语言学) 计算机视觉 模式识别(心理学) 放射科 医学 运营管理 语言学 哲学 经济
作者
Pablo Laiz,Jordi Vitrià,Hagen Wenzek,Carolina Malagelada,Fernando Azpiroz,Santi Seguí
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:86: 101794-101794 被引量:20
标识
DOI:10.1016/j.compmedimag.2020.101794
摘要

Wireless capsule endoscopy is a medical procedure used to visualize the entire gastrointestinal tract and to diagnose intestinal conditions, such as polyps or bleeding. Current analyses are performed by manually inspecting nearly each one of the frames of the video, a tedious and error-prone task. Automatic image analysis methods can be used to reduce the time needed for physicians to evaluate a capsule endoscopy video. However these methods are still in a research phase. In this paper we focus on computer-aided polyp detection in capsule endoscopy images. This is a challenging problem because of the diversity of polyp appearance, the imbalanced dataset structure and the scarcity of data. We have developed a new polyp computer-aided decision system that combines a deep convolutional neural network and metric learning. The key point of the method is the use of the Triplet Loss function with the aim of improving feature extraction from the images when having small dataset. The Triplet Loss function allows to train robust detectors by forcing images from the same category to be represented by similar embedding vectors while ensuring that images from different categories are represented by dissimilar vectors. Empirical results show a meaningful increase of AUC values compared to state-of-the-art methods. A good performance is not the only requirement when considering the adoption of this technology to clinical practice. Trust and explainability of decisions are as important as performance. With this purpose, we also provide a method to generate visual explanations of the outcome of our polyp detector. These explanations can be used to build a physician's trust in the system and also to convey information about the inner working of the method to the designer for debugging purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
feige发布了新的文献求助10
1秒前
5秒前
6秒前
英姑应助慧子采纳,获得10
8秒前
8秒前
欧阳正义发布了新的文献求助10
9秒前
10秒前
啦啦啦123完成签到,获得积分10
10秒前
log发布了新的文献求助10
11秒前
12秒前
Miss-Li发布了新的文献求助20
12秒前
汉堡包应助zhan采纳,获得20
12秒前
12秒前
我是老大应助feige采纳,获得10
12秒前
万能图书馆应助黑冰A采纳,获得10
13秒前
Shueason完成签到 ,获得积分10
14秒前
zz发布了新的文献求助20
18秒前
syqlyd完成签到 ,获得积分10
20秒前
思源应助黄晓旭采纳,获得10
21秒前
梨花酒完成签到,获得积分10
21秒前
sun发布了新的文献求助10
22秒前
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
Hello应助科研通管家采纳,获得10
23秒前
Liufgui应助科研通管家采纳,获得10
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
Liufgui应助科研通管家采纳,获得10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
OKOK应助科研通管家采纳,获得20
23秒前
英姑应助科研通管家采纳,获得10
23秒前
Liufgui应助科研通管家采纳,获得10
23秒前
24秒前
大模型应助科研通管家采纳,获得10
24秒前
共享精神应助科研通管家采纳,获得10
24秒前
Liufgui应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
iNk应助科研通管家采纳,获得20
24秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498