Using deep learning to model the biological dose prediction on bulky lung cancer patients of partial stereotactic ablation radiotherapy

SABR波动模型 放射外科 烧蚀 核医学 放射治疗 肺癌 剂量学 放射治疗计划 计算机科学 过度拟合 递归分区 医学 数学 机器学习 人工智能 放射科 病理 内科学 计量经济学 波动性(金融) 随机波动 人工神经网络
作者
Yue Li,Kanghui He,Mingwei Ma,Xin Qi,Yun Bai,Si‐Wei Liu,Yan Gao,Feng Lyu,Chenghao Jia,Bo Zhao,Xianshu Gao
出处
期刊:Medical Physics [Wiley]
卷期号:47 (12): 6540-6550 被引量:6
标识
DOI:10.1002/mp.14518
摘要

Purpose To develop a biological dose prediction model considering tissue bio‐reactions in addition to patient anatomy for achieving a more comprehensive evaluation of tumor control and promoting the automatic planning of bulky lung cancer. Methods A database containing images and partial stereotactic ablation boost radiotherapy (P‐SABR) plans of 94 bulky lung cancer patients was studied. Patient‐specific parameters of gross tumor boost volume (GTVb), planning gross target volume (PGTV), and identified organs at risk (OARs) were extracted via Numpy and simple ITK. The original dose and structure maps for P‐SABR patients were resampled to have a voxel resolution of 3.9 × 3.9 × 3 mm 3 . Biological equivalent dose (BED) distributions were reprogrammed based on physical dose volumes. A developed deep learning architecture, Nestnet, was adopted as the training framework. We utilized two approaches for data organization to correlate the structures and BED: (a) BED programming before training model (B‐Nestnet); (b) BED programming after the training process (D‐B Nestnet). The early‐stop mechanism was adopted on the validation set to avoid overfitting. The evaluation criteria of predictive accuracy contain the minimum BED of GTVb and PGTV, the maximum and the mean BED of all targets, BED‐volume metrics. For comparison, we also used the original Unet for BED prediction. The absolute differences were statistically analyzed with the paired‐samples t test. Results The statistical outcomes demonstrate that D‐B Nestnet model predicts biological dose distributions accurately. The average absolute biases of [max, mean] BED for GTVb, PGTV are [2.1%, 3.3%] and [2.1%, 4.7%], respectively. Averaging across most of OARs, the D‐B Nestnet model is capable of predicting the errors of the max and mean BED within 6.3% and 6.1%, respectively. While the compared models performed worse with averaged max and mean BED prediction errors surpassing 10% on some specific OARs. Conclusions The study developed a D‐B Nestnet model capable of predicting BED distribution accurately for bulky lung cancer patients in P‐SABR. The predicted BED map enables a quick intuitive evaluation of tumor ablation, modification of the ablation range to improve BED of tumor targets, and quality assessment. It represents a major step forward toward automated P‐SABR planning on bulky lung cancer in real clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助xhuryts采纳,获得10
1秒前
2秒前
huihui完成签到 ,获得积分10
2秒前
ka发布了新的文献求助10
2秒前
大模型应助迅速的岂愈采纳,获得10
2秒前
2秒前
wanci应助木桶人plus采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得20
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
5秒前
wanci应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
思源应助木木三采纳,获得10
6秒前
SYLH应助mystryjoker采纳,获得10
7秒前
木樨发布了新的文献求助10
7秒前
7秒前
爱lx完成签到,获得积分10
9秒前
哈哈哈应助进_采纳,获得10
11秒前
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735677
求助须知:如何正确求助?哪些是违规求助? 3279465
关于积分的说明 10015528
捐赠科研通 2996202
什么是DOI,文献DOI怎么找? 1643929
邀请新用户注册赠送积分活动 781579
科研通“疑难数据库(出版商)”最低求助积分说明 749423