A machine learning‐based, decision support, mobile phone application for diagnosis of common dermatological diseases

医学 健康 临床决策支持系统 移动电话 医学诊断 机器学习 人工智能 工作流程 卷积神经网络 远程医疗 注意事项 人气 目的皮肤病学 医疗保健 决策支持系统 计算机科学 病理 心理干预 护理部 社会心理学 经济 数据库 电信 经济增长 心理学
作者
Rashi Pangti,Jyoti Mathur,Vikas Chouhan,S. Mohan Kumar,Lavina Rajput,Sandesh Shah,A. K. Gupta,Aparna Banerjee Dixit,Dhwani Dholakia,Sanjeev Gupta,Somesh Gupta,M. Patricia George,Vinod Sharma,Somesh Gupta
出处
期刊:Journal of The European Academy of Dermatology and Venereology [Wiley]
卷期号:35 (2): 536-545 被引量:50
标识
DOI:10.1111/jdv.16967
摘要

Abstract Background The integration of machine learning algorithms in decision support tools for physicians is gaining popularity. These tools can tackle the disparities in healthcare access as the technology can be implemented on smartphones. We present the first, large‐scale study on patients with skin of colour, in which the feasibility of a novel mobile health application (mHealth app) was investigated in actual clinical workflows. Objective To develop a mHealth app to diagnose 40 common skin diseases and test it in clinical settings. Methods A convolutional neural network‐based algorithm was trained with clinical images of 40 skin diseases. A smartphone app was generated and validated on 5014 patients, attending rural and urban outpatient dermatology departments in India. The results of this mHealth app were compared against the dermatologists’ diagnoses. Results The machine–learning model, in an in silico validation study, demonstrated an overall top‐1 accuracy of 76.93 ± 0.88% and mean area‐under‐curve of 0.95 ± 0.02 on a set of clinical images. In the clinical study, on patients with skin of colour, the app achieved an overall top‐1 accuracy of 75.07% (95% CI = 73.75–76.36), top‐3 accuracy of 89.62% (95% CI = 88.67–90.52) and mean area‐under‐curve of 0.90 ± 0.07. Conclusion This study underscores the utility of artificial intelligence‐driven smartphone applications as a point‐of‐care, clinical decision support tool for dermatological diagnosis for a wide spectrum of skin diseases in patients of the skin of colour.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
void1999完成签到,获得积分10
刚刚
1秒前
an发布了新的文献求助10
1秒前
爆米花应助玄策采纳,获得10
2秒前
2秒前
2秒前
2秒前
浮浮世世发布了新的文献求助10
3秒前
李健的小迷弟应助sunny采纳,获得10
3秒前
3秒前
oyasimi完成签到,获得积分10
4秒前
CNSer完成签到,获得积分10
4秒前
平常的问雁完成签到,获得积分10
4秒前
4秒前
华仔应助oyasimi采纳,获得10
6秒前
6秒前
Kidden发布了新的文献求助10
6秒前
666发布了新的文献求助10
6秒前
牛马发布了新的文献求助10
6秒前
鄢浩凝完成签到,获得积分10
7秒前
7秒前
7秒前
静爸发布了新的文献求助10
8秒前
霸气丹寒完成签到,获得积分20
8秒前
科研通AI5应助ddkkkkkk采纳,获得10
9秒前
桃核发布了新的文献求助30
9秒前
丘比特应助zjz1采纳,获得10
10秒前
httcyx关注了科研通微信公众号
10秒前
yan123发布了新的文献求助10
10秒前
个性的紫菜应助Xx采纳,获得10
10秒前
10秒前
逻辑猫完成签到,获得积分10
10秒前
11秒前
Figbiliy完成签到,获得积分10
11秒前
佳佳发布了新的文献求助20
12秒前
BBQ发布了新的文献求助150
12秒前
白方明发布了新的文献求助10
12秒前
a均发布了新的文献求助10
13秒前
科研通AI5应助yyyy采纳,获得10
13秒前
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483126
求助须知:如何正确求助?哪些是违规求助? 3072548
关于积分的说明 9127020
捐赠科研通 2764145
什么是DOI,文献DOI怎么找? 1516910
邀请新用户注册赠送积分活动 701852
科研通“疑难数据库(出版商)”最低求助积分说明 700728