表观基因组
表观遗传学
组蛋白
生物
染色质
DNA甲基化
表观遗传学
心力衰竭
基因表达调控
遗传学
细胞生物学
生物信息学
医学
基因表达
基因
内科学
作者
Roberto Papait,Simone Serio,Gianluigi Condorelli
标识
DOI:10.1152/physrev.00037.2019
摘要
Gene expression is needed for the maintenance of heart function under normal conditions and in response to stress. Each cell type of the heart has a specific program controlling transcription. Different types of stress induce modifications of these programs and, if prolonged, can lead to altered cardiac phenotype and, eventually, to heart failure. The transcriptional status of a gene is regulated by the epigenome, a complex network of DNA and histone modifications. Until a few years ago, our understanding of the role of the epigenome in heart disease was limited to that played by histone deacetylation. But over the last decade, the consequences for the maintenance of homeostasis in the heart and for the development of cardiac hypertrophy of a number of other modifications, including DNA methylation and hydroxymethylation, histone methylation and acetylation, and changes in chromatin architecture, have become better understood. Indeed, it is now clear that many levels of regulation contribute to defining the epigenetic landscape required for correct cardiomyocyte function, and that their perturbation is responsible for cardiac hypertrophy and fibrosis. Here, we review these aspects and draw a picture of what epigenetic modification may imply at the therapeutic level for heart failure.
科研通智能强力驱动
Strongly Powered by AbleSci AI