Robust Stochastic Optimization Made Easy with RSOME

稳健优化 数学优化 随机优化 连续优化 计算机科学 瓦瑟斯坦度量 树(集合论) 模棱两可 随机规划 公制(单位) 最优化问题 数学 多群优化 运营管理 经济 数学分析 程序设计语言 应用数学
作者
Zhi Chen,Melvyn Sim,Peng Xiong
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:66 (8): 3329-3339 被引量:175
标识
DOI:10.1287/mnsc.2020.3603
摘要

We present a new distributionally robust optimization model called robust stochastic optimization (RSO), which unifies both scenario-tree-based stochastic linear optimization and distributionally robust optimization in a practicable framework that can be solved using the state-of-the-art commercial optimization solvers. We also develop a new algebraic modeling package, Robust Stochastic Optimization Made Easy (RSOME), to facilitate the implementation of RSO models. The model of uncertainty incorporates both discrete and continuous random variables, typically assumed in scenario-tree-based stochastic linear optimization and distributionally robust optimization, respectively. To address the nonanticipativity of recourse decisions, we introduce the event-wise recourse adaptations, which integrate the scenario-tree adaptation originating from stochastic linear optimization and the affine adaptation popularized in distributionally robust optimization. Our proposed event-wise ambiguity set is rich enough to capture traditional statistic-based ambiguity sets with convex generalized moments, mixture distribution, φ-divergence, Wasserstein (Kantorovich-Rubinstein) metric, and also inspire machine-learning-based ones using techniques such as K-means clustering and classification and regression trees. Several interesting RSO models, including optimizing over the Hurwicz criterion and two-stage problems over Wasserstein ambiguity sets, are provided. This paper was accepted by David Simchi-Levi, optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mdjinij发布了新的文献求助10
1秒前
1秒前
好运连连完成签到,获得积分10
1秒前
栗子球应助来抓我啊采纳,获得10
1秒前
daoyi发布了新的文献求助30
1秒前
2秒前
所所应助TH采纳,获得10
2秒前
3秒前
3秒前
Vvv发布了新的文献求助10
4秒前
4秒前
我是老大应助花痴的文昊采纳,获得10
4秒前
FashionBoy应助YSL采纳,获得10
5秒前
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
Owen应助redamancy采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得20
5秒前
大个应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
迷路翠萱发布了新的文献求助10
7秒前
福禄小金刚完成签到 ,获得积分20
8秒前
万能图书馆应助蔬菜土豆采纳,获得30
8秒前
wuran发布了新的文献求助10
8秒前
8秒前
西门凡双发布了新的文献求助10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940647
求助须知:如何正确求助?哪些是违规求助? 4206748
关于积分的说明 13075495
捐赠科研通 3985361
什么是DOI,文献DOI怎么找? 2182177
邀请新用户注册赠送积分活动 1197793
关于科研通互助平台的介绍 1110088