An Optimality Criteria Approach for the Topology Synthesis of Compliant Mechanisms

数学优化 拓扑优化 最优性准则 序列二次规划 顺应机制 有限元法 最优化问题 计算机科学 数学 拓扑(电路) 二次规划 热力学 组合数学 物理
作者
Anupam Saxena,G. K. Ananthasuresh
标识
DOI:10.1115/detc98/mech-5937
摘要

Abstract The physical insight used in formulating a multi-criteria optimization problem for the synthesis of compliant mechanisms, is quickly lost if mathematical programming techniques (SLP, SQP etc.) are used to determine the optimal solution. As opposed to the previous works that relied upon mathematical programming search techniques to find the optimum solution, in this paper we present an alternative method of solution called the optimality criteria method. Optimality criteria methods have proven to be effective in structural optimization problems with a large number of variables, and very few constraints as is the case in the topology synthesis of compliant mechanisms. The important new results of this paper include: (i) the derivation of a physically insightful optimal property of compliant mechanisms which states that the ratio of the mutual potential energy density and the strain energy density is uniform throughout the continuum (ii) the development of the optimality criteria method of solution in the form of a simple update formula for the design variables by using the above property (iii) design parameterization using the frame finite-element based ground-structure that appropriately accounts for the requisite bending behavior in the continuum, and (iv) numerical implementation of previously reported density based design parameterization using bilinear plane-stress elements. In addition, a new energy based multi-criteria objective function is presented to maximize the useful output energy (which is equivalent to maximizing the mechanical advantage) while meeting the kinematic requirements. Several examples are included to demonstrate the validity of the optimal property, the optimality-criteria method of solution, and the improvements made possible by the new energy based objective function.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助宝贝采纳,获得10
刚刚
金晶发布了新的文献求助10
1秒前
1秒前
Peter完成签到,获得积分20
1秒前
丰知然应助zhengke924采纳,获得10
1秒前
飘逸晓博完成签到 ,获得积分20
2秒前
coco完成签到 ,获得积分10
2秒前
科研菜鸟发布了新的文献求助10
2秒前
2秒前
大气的乌冬面完成签到,获得积分10
2秒前
2秒前
RUSTY完成签到,获得积分20
2秒前
田様应助11采纳,获得10
3秒前
3秒前
3秒前
3秒前
芝士完成签到,获得积分10
3秒前
pqy发布了新的文献求助10
3秒前
脆脆鲨完成签到,获得积分10
4秒前
4秒前
文安完成签到,获得积分10
4秒前
微笑如冰完成签到,获得积分10
5秒前
luo给luo的求助进行了留言
5秒前
晨曦发布了新的文献求助10
5秒前
5秒前
大方小白发布了新的文献求助10
5秒前
细腻沅发布了新的文献求助10
5秒前
科研通AI5应助FFF采纳,获得10
6秒前
6秒前
茉莉完成签到,获得积分10
6秒前
今今发布了新的文献求助10
7秒前
追寻的筝发布了新的文献求助10
7秒前
请叫我风吹麦浪应助Ll采纳,获得10
7秒前
Keming完成签到,获得积分10
7秒前
害羞聋五发布了新的文献求助10
8秒前
tulip发布了新的文献求助10
8秒前
8秒前
8秒前
嘟嘟发布了新的文献求助10
8秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762