An Optimality Criteria Approach for the Topology Synthesis of Compliant Mechanisms

数学优化 拓扑优化 最优性准则 序列二次规划 顺应机制 有限元法 最优化问题 计算机科学 数学 拓扑(电路) 二次规划 热力学 组合数学 物理
作者
Anupam Saxena,G. K. Ananthasuresh
标识
DOI:10.1115/detc98/mech-5937
摘要

Abstract The physical insight used in formulating a multi-criteria optimization problem for the synthesis of compliant mechanisms, is quickly lost if mathematical programming techniques (SLP, SQP etc.) are used to determine the optimal solution. As opposed to the previous works that relied upon mathematical programming search techniques to find the optimum solution, in this paper we present an alternative method of solution called the optimality criteria method. Optimality criteria methods have proven to be effective in structural optimization problems with a large number of variables, and very few constraints as is the case in the topology synthesis of compliant mechanisms. The important new results of this paper include: (i) the derivation of a physically insightful optimal property of compliant mechanisms which states that the ratio of the mutual potential energy density and the strain energy density is uniform throughout the continuum (ii) the development of the optimality criteria method of solution in the form of a simple update formula for the design variables by using the above property (iii) design parameterization using the frame finite-element based ground-structure that appropriately accounts for the requisite bending behavior in the continuum, and (iv) numerical implementation of previously reported density based design parameterization using bilinear plane-stress elements. In addition, a new energy based multi-criteria objective function is presented to maximize the useful output energy (which is equivalent to maximizing the mechanical advantage) while meeting the kinematic requirements. Several examples are included to demonstrate the validity of the optimal property, the optimality-criteria method of solution, and the improvements made possible by the new energy based objective function.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烂漫的金针菇完成签到,获得积分10
刚刚
李健应助优雅的山柳采纳,获得10
刚刚
无极微光给LIANG的求助进行了留言
1秒前
2秒前
胡沈焕然完成签到,获得积分20
2秒前
乐观鑫鹏发布了新的文献求助10
2秒前
catherine发布了新的文献求助20
2秒前
3秒前
费老五完成签到 ,获得积分10
3秒前
所所应助黎金鑫采纳,获得10
3秒前
4秒前
黄柠檬完成签到,获得积分10
4秒前
柴柴柴完成签到,获得积分20
5秒前
CipherSage应助困困酱采纳,获得10
5秒前
香蕉觅云应助MT采纳,获得10
5秒前
5秒前
Jasper应助亚铁氰化钾采纳,获得10
5秒前
CodeCraft应助Annie采纳,获得30
6秒前
斯文败类应助能干雁凡采纳,获得10
7秒前
7秒前
无极微光应助开朗颜演采纳,获得20
7秒前
微笑向卉发布了新的文献求助10
8秒前
8秒前
SciGPT应助徐爱琳采纳,获得10
8秒前
9秒前
刘威发布了新的文献求助10
9秒前
搞怪的若灵完成签到,获得积分10
9秒前
王了了发布了新的文献求助10
10秒前
10秒前
活力菠萝发布了新的文献求助10
10秒前
zzrg发布了新的文献求助10
11秒前
11秒前
yufeizhle完成签到 ,获得积分10
11秒前
12秒前
12秒前
丘比特应助bbbbhr采纳,获得10
12秒前
所所应助孤巷的猫采纳,获得10
12秒前
Mississippiecho完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578243
求助须知:如何正确求助?哪些是违规求助? 4663137
关于积分的说明 14744830
捐赠科研通 4603883
什么是DOI,文献DOI怎么找? 2526739
邀请新用户注册赠送积分活动 1496343
关于科研通互助平台的介绍 1465712