血流动力学反应
运动皮层
功能近红外光谱
手指敲击
物理医学与康复
初级运动皮层
神经科学
心理学
计算机科学
认知
医学
听力学
前额叶皮质
心率
血压
放射科
刺激
作者
Michele Lacerenza,Lorenzo Spinelli,Mauro Buttafava,Alberto Dalla Mora,Franco Zappa,Antonio Pifferi,Alberto Tosi,Bruno Cozzi,Alessandro Torricelli,Davide Contini
出处
期刊:Neurophotonics
[SPIE - International Society for Optical Engineering]
日期:2021-02-22
卷期号:8 (01)
被引量:7
标识
DOI:10.1117/1.nph.8.1.015006
摘要
Significance: This study is a preliminary step toward the identification of a noninvasive and reliable tool for monitoring the presence and progress of gaiting dysfunctions. Aim: We present the results of a pilot study for monitoring the motor cortex hemodynamic response function (HRF) in freely walking subjects, with time-domain functional near-infrared spectroscopy (TD fNIRS). Approach: A compact and wearable single-channel TD fNIRS oximeter was employed. The lower limb motor cortex area of three healthy subjects was monitored while performing two different freely moving gaiting tasks: forward and backward walking. Results: The time course of oxygenated and deoxygenated hemoglobin was measured during the different walking tasks. Brain motor cortex hemodynamic activations have been analyzed throughout an adaptive HRF fitting procedure, showing a greater involvement of motor area in the backward walking task. By comparison with the HRF obtained in a finger-tapping task performed in a still condition, we excluded any effect of motion artifacts in the gaiting tasks. Conclusions: For the first time to our knowledge, the hemodynamic motor cortex response was measured by TD fNIRS during natural, freely walking exercises. The cortical response during forward and backward walking shows differences, possibly related to the diverse involvement of the motor cortex in the two types of gaiting.
科研通智能强力驱动
Strongly Powered by AbleSci AI