Artificial Intelligence for Intraoperative Guidance

医学 人工智能 胆囊 解剖(医学) 胆囊切除术 腹腔镜胆囊切除术 胆囊管 深度学习 随机森林 外科 计算机科学
作者
Amin Madani,Babak Namazi,Maria S. Altieri,Daniel A. Hashimoto,Angela María Rivera,Philip H. Pucher,Allison Navarrete-Welton,Ganesh Sankaranarayanan,L. Michael Brunt,Allan Okrainec,Adnan Alseidi
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:276 (2): 363-369 被引量:173
标识
DOI:10.1097/sla.0000000000004594
摘要

Objective: The aim of this study was to develop and evaluate the performance of artificial intelligence (AI) models that can identify safe and dangerous zones of dissection, and anatomical landmarks during laparoscopic cholecystectomy (LC). Summary Background Data: Many adverse events during surgery occur due to errors in visual perception and judgment leading to misinterpretation of anatomy. Deep learning, a subfield of AI, can potentially be used to provide real-time guidance intraoperatively. Methods: Deep learning models were developed and trained to identify safe (Go) and dangerous (No-Go) zones of dissection, liver, gallbladder, and hepatocystic triangle during LC. Annotations were performed by 4 high-volume surgeons. AI predictions were evaluated using 10-fold cross-validation against annotations by expert surgeons. Primary outcomes were intersection- over-union (IOU) and F1 score (validated spatial correlation indices), and secondary outcomes were pixel-wise accuracy, sensitivity, specificity, ± standard deviation. Results: AI models were trained on 2627 random frames from 290 LC videos, procured from 37 countries, 136 institutions, and 153 surgeons. Mean IOU, F1 score, accuracy, sensitivity, and specificity for the AI to identify Go zones were 0.53 (±0.24), 0.70 (±0.28), 0.94 (±0.05), 0.69 (±0.20). and 0.94 (±0.03), respectively. For No-Go zones, these metrics were 0.71 (±0.29), 0.83 (±0.31), 0.95 (±0.06), 0.80 (±0.21), and 0.98 (±0.05), respectively. Mean IOU for identification of the liver, gallbladder, and hepatocystic triangle were: 0.86 (±0.12), 0.72 (±0.19), and 0.65 (±0.22), respectively. Conclusions: AI can be used to identify anatomy within the surgical field. This technology may eventually be used to provide real-time guidance and minimize the risk of adverse events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lucky发布了新的文献求助10
1秒前
2秒前
3秒前
子非发布了新的文献求助10
3秒前
5秒前
5秒前
Owen应助2028847955采纳,获得10
7秒前
8秒前
Owen应助安安安采纳,获得10
8秒前
esyncoms发布了新的文献求助10
10秒前
13秒前
YuanbinMao完成签到 ,获得积分10
13秒前
源味怪豆完成签到,获得积分10
13秒前
14秒前
LiangRen发布了新的文献求助10
14秒前
17秒前
A1234567完成签到,获得积分10
17秒前
18秒前
科研通AI2S应助Soph采纳,获得10
19秒前
19秒前
蜂蜜发布了新的文献求助10
20秒前
1LDan完成签到,获得积分10
20秒前
21秒前
四季养生人完成签到 ,获得积分10
24秒前
zcc发布了新的文献求助10
24秒前
醉生梦死发布了新的文献求助10
24秒前
烟花应助fanpengzhen采纳,获得10
26秒前
wanci应助科研通管家采纳,获得10
27秒前
Akim应助科研通管家采纳,获得10
27秒前
KSDalton应助科研通管家采纳,获得10
27秒前
手机应助科研通管家采纳,获得20
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
三月聚粮应助科研通管家采纳,获得20
27秒前
科研通AI2S应助科研通管家采纳,获得30
27秒前
英姑应助科研通管家采纳,获得200
27秒前
27秒前
27秒前
28秒前
NexusExplorer应助精明的满天采纳,获得10
28秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270931
求助须知:如何正确求助?哪些是违规求助? 2910251
关于积分的说明 8353197
捐赠科研通 2580762
什么是DOI,文献DOI怎么找? 1403704
科研通“疑难数据库(出版商)”最低求助积分说明 655921
邀请新用户注册赠送积分活动 635279