An Optimal Channel Selection for EEG-Based Depression Detection via Kernel-Target Alignment

脑电图 计算机科学 人工智能 模式识别(心理学) 特征选择 核(代数) 冗余(工程) 频道(广播) 选择(遗传算法) 机器学习 心情 心理学 数学 精神科 电信 组合数学 操作系统
作者
Jian Shen,Xiaowei Zhang,Xiao Huang,Madeline Wu,Jin Gao,Dawei Lu,Zhijie Ding,Bin Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 2545-2556 被引量:45
标识
DOI:10.1109/jbhi.2020.3045718
摘要

Depression is a mental disorder with emotional and cognitive dysfunction. The main clinical characteristic of depression is significant and persistent low mood. As reported, depression is a leading cause of disability worldwide. Moreover, the rate of recognition and treatment for depression is low. Therefore, the detection and treatment of depression are urgent. Multichannel electroencephalogram (EEG) signals, which reflect the working status of the human brain, can be used to develop an objective and promising tool for augmenting the clinical effects in the diagnosis and detection of depression. However, when a large number of EEG channels are acquired, the information redundancy and computational complexity of the EEG signals increase; thus, effective channel selection algorithms are required not only for machine learning feasibility, but also for practicality in clinical depression detection. Consequently, we propose an optimal channel selection method for EEG-based depression detection via kernel-target alignment (KTA) to effectively resolve the abovementioned issues. In this method, we consider a modified version KTA that can measure the similarity between the kernel matrix for channel selection and the target matrix as an objective function and optimize the objective function by a proposed optimal channel selection strategy. Experimental results on two EEG datasets show that channel selection can effectively increase the classification performance and that even if we rely only on a small subset of channels, the results are still acceptable. The selected channels are in line with the expected latent cortical activity patterns in depression detection. Moreover, the experimental results demonstrate that our method outperforms the state-of-the-art channel selection approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任婷完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
quhayley应助sana采纳,获得10
3秒前
CodeCraft应助古月小兑采纳,获得10
3秒前
吴正言发布了新的文献求助10
3秒前
3秒前
在水一方应助东北三省采纳,获得10
3秒前
sjh发布了新的文献求助20
3秒前
闫素肃完成签到,获得积分10
4秒前
认真的沛蓝完成签到,获得积分10
4秒前
研友_ZGXj48发布了新的文献求助10
5秒前
三号完成签到,获得积分20
5秒前
萌萌大懒虫完成签到,获得积分10
5秒前
杏仁发布了新的文献求助10
6秒前
yunnguw完成签到,获得积分20
6秒前
傲娇靖巧完成签到,获得积分20
6秒前
6秒前
7秒前
三号发布了新的文献求助10
7秒前
8秒前
小鱼完成签到 ,获得积分10
8秒前
8秒前
论太刀虾完成签到,获得积分10
9秒前
酷波er应助吴正言采纳,获得10
9秒前
情怀应助summer大魔王采纳,获得10
9秒前
大个应助summer大魔王采纳,获得10
9秒前
Owen应助summer大魔王采纳,获得10
9秒前
上官若男应助summer大魔王采纳,获得10
9秒前
Owen应助summer大魔王采纳,获得10
9秒前
1234发布了新的文献求助10
9秒前
糊涂的大门完成签到,获得积分10
10秒前
裴翰发布了新的文献求助10
10秒前
10秒前
10秒前
田様应助迪迦采纳,获得30
11秒前
bxb完成签到,获得积分10
11秒前
开心妍完成签到 ,获得积分10
11秒前
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148856
求助须知:如何正确求助?哪些是违规求助? 2799869
关于积分的说明 7837518
捐赠科研通 2457441
什么是DOI,文献DOI怎么找? 1307837
科研通“疑难数据库(出版商)”最低求助积分说明 628280
版权声明 601685