An Optimal Channel Selection for EEG-Based Depression Detection via Kernel-Target Alignment

脑电图 计算机科学 人工智能 模式识别(心理学) 特征选择 核(代数) 冗余(工程) 频道(广播) 选择(遗传算法) 机器学习 心情 心理学 数学 精神科 组合数学 操作系统 计算机网络
作者
Jian Shen,Xiaowei Zhang,Xiao Huang,Manxi Wu,Jin Gao,Dawei Lu,Zhijie Ding,Bin Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 2545-2556 被引量:84
标识
DOI:10.1109/jbhi.2020.3045718
摘要

Depression is a mental disorder with emotional and cognitive dysfunction. The main clinical characteristic of depression is significant and persistent low mood. As reported, depression is a leading cause of disability worldwide. Moreover, the rate of recognition and treatment for depression is low. Therefore, the detection and treatment of depression are urgent. Multichannel electroencephalogram (EEG) signals, which reflect the working status of the human brain, can be used to develop an objective and promising tool for augmenting the clinical effects in the diagnosis and detection of depression. However, when a large number of EEG channels are acquired, the information redundancy and computational complexity of the EEG signals increase; thus, effective channel selection algorithms are required not only for machine learning feasibility, but also for practicality in clinical depression detection. Consequently, we propose an optimal channel selection method for EEG-based depression detection via kernel-target alignment (KTA) to effectively resolve the abovementioned issues. In this method, we consider a modified version KTA that can measure the similarity between the kernel matrix for channel selection and the target matrix as an objective function and optimize the objective function by a proposed optimal channel selection strategy. Experimental results on two EEG datasets show that channel selection can effectively increase the classification performance and that even if we rely only on a small subset of channels, the results are still acceptable. The selected channels are in line with the expected latent cortical activity patterns in depression detection. Moreover, the experimental results demonstrate that our method outperforms the state-of-the-art channel selection approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
徐逊发布了新的文献求助10
1秒前
香蕉觅云应助野性的博涛采纳,获得10
1秒前
Wonderland完成签到,获得积分10
4秒前
6秒前
爱笑的傲薇完成签到,获得积分10
7秒前
alwry发布了新的文献求助10
7秒前
完美世界应助wa采纳,获得10
7秒前
Lucas应助星辰采纳,获得10
9秒前
10秒前
Wy完成签到,获得积分10
10秒前
jiahuo1完成签到,获得积分10
11秒前
英俊绝义发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
yaoyao完成签到,获得积分10
14秒前
Rondab应助suha采纳,获得10
14秒前
15秒前
陶佳仪完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
17秒前
17秒前
18秒前
18秒前
da发布了新的文献求助10
19秒前
可爱得喵喵叫的中华卷柏完成签到 ,获得积分10
19秒前
19秒前
坦率的匪应助英俊绝义采纳,获得10
20秒前
wa发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
情怀应助陈龙采纳,获得10
22秒前
23秒前
Owen应助流萤采纳,获得10
23秒前
所所应助阿旭采纳,获得10
24秒前
Han发布了新的文献求助10
27秒前
NexusExplorer应助STAN采纳,获得10
27秒前
Sienna发布了新的文献求助10
28秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126