An Optimal Channel Selection for EEG-Based Depression Detection via Kernel-Target Alignment

脑电图 计算机科学 人工智能 模式识别(心理学) 特征选择 核(代数) 冗余(工程) 频道(广播) 选择(遗传算法) 机器学习 心情 心理学 数学 精神科 组合数学 操作系统 计算机网络
作者
Jian Shen,Xiaowei Zhang,Xiao Huang,Manxi Wu,Jin Gao,Dawei Lu,Zhijie Ding,Bin Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 2545-2556 被引量:84
标识
DOI:10.1109/jbhi.2020.3045718
摘要

Depression is a mental disorder with emotional and cognitive dysfunction. The main clinical characteristic of depression is significant and persistent low mood. As reported, depression is a leading cause of disability worldwide. Moreover, the rate of recognition and treatment for depression is low. Therefore, the detection and treatment of depression are urgent. Multichannel electroencephalogram (EEG) signals, which reflect the working status of the human brain, can be used to develop an objective and promising tool for augmenting the clinical effects in the diagnosis and detection of depression. However, when a large number of EEG channels are acquired, the information redundancy and computational complexity of the EEG signals increase; thus, effective channel selection algorithms are required not only for machine learning feasibility, but also for practicality in clinical depression detection. Consequently, we propose an optimal channel selection method for EEG-based depression detection via kernel-target alignment (KTA) to effectively resolve the abovementioned issues. In this method, we consider a modified version KTA that can measure the similarity between the kernel matrix for channel selection and the target matrix as an objective function and optimize the objective function by a proposed optimal channel selection strategy. Experimental results on two EEG datasets show that channel selection can effectively increase the classification performance and that even if we rely only on a small subset of channels, the results are still acceptable. The selected channels are in line with the expected latent cortical activity patterns in depression detection. Moreover, the experimental results demonstrate that our method outperforms the state-of-the-art channel selection approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
努力的宁发布了新的文献求助10
刚刚
LH发布了新的文献求助10
1秒前
1秒前
如如如如完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助50
2秒前
最短的咒发布了新的文献求助10
3秒前
3秒前
4秒前
RATHER发布了新的文献求助10
4秒前
JamesPei应助负责的方盒采纳,获得10
4秒前
楠木南完成签到,获得积分10
5秒前
David发布了新的文献求助10
5秒前
温柔的枫完成签到,获得积分10
5秒前
peaches完成签到,获得积分10
5秒前
6秒前
anlikek发布了新的文献求助20
6秒前
6秒前
Ava应助阿空采纳,获得10
6秒前
boge5633完成签到,获得积分10
7秒前
温柔的枫发布了新的文献求助10
8秒前
8秒前
折射角完成签到,获得积分10
8秒前
9秒前
宋小九完成签到,获得积分10
10秒前
LH完成签到,获得积分20
10秒前
QAQ77发布了新的文献求助10
10秒前
从容不弱完成签到,获得积分10
11秒前
浅色凉生发布了新的文献求助10
11秒前
14秒前
易楠完成签到,获得积分10
14秒前
ziwei发布了新的文献求助10
15秒前
斯文败类应助甜甜采纳,获得10
16秒前
自然冥幽完成签到,获得积分10
17秒前
17秒前
量子星尘发布了新的文献求助50
18秒前
18秒前
执着的诗桃完成签到,获得积分10
18秒前
科研通AI6应助LH采纳,获得10
19秒前
QIQI发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003151
求助须知:如何正确求助?哪些是违规求助? 4248042
关于积分的说明 13235023
捐赠科研通 4046979
什么是DOI,文献DOI怎么找? 2214109
邀请新用户注册赠送积分活动 1224180
关于科研通互助平台的介绍 1144425