(Invited) Anodizing of Metals for Fabrication of Functional Nanostructured Surfaces

阳极氧化 纳米线 材料科学 电解抛光 纳米孔 纳米技术 阳极 电解质 纳米结构 润湿 冶金 化学工程 复合材料 电极 化学 工程类 物理化学
作者
H. Habazaki
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (10): 1202-1202
标识
DOI:10.1149/ma2020-02101202mtgabs
摘要

Anodizing of metals, including aluminum, titanium, and iron, is a simple and const-effective process to form various nanostructured oxide films, such as nanoporous, nanotubular, and nanowire films. Such nanostructured anodic films have attracted much attention for many potential functional applications as well as fundamental interests on the mechanism of self-organized nanostructure formation. Here, our recent studies on the formation of nanostructured anodic films on aluminum, copper, and zinc and their application to controlled wettability will be outlined. Anodizing of zinc in KHCO 3 electrolyte produces a nanowire-type anodic film on entire metal surface. The formation of the nanowire film involves the initial pitting corrosion; pits are developed on the zinc metal surface, and embryos of nanowires are formed within the pits. When the pits are covered with a thin air-formed or electropolishing film, the nanowire formation is promoted as a consequence of the increased concentration of dissolved zinc species within the pits. Then, the nanowires grow toward the outside of the pits and cover the entire metal surfaces. Because of this growth process, the nanowires grow radial direction before covering the entire surface. The nanowire surface is one of the promising geometry for superhydrophobicity. In fact, anodic nanowire film surface becomes superhydrophobic after fluoroalkylsilane monolayer coating. The anodic nanowire film is also developed on copper by anodizing in KOH electrolyte. The copper surface can be completely covered with the nanowires only for 30 s at a constant current density of 10 mA cm –2 . The nanowires consist of a single crystalline Cu(OH) 2 phase, and the nanowires on copper are formed uniformly without forming pits. The nanowires are reduced readily to copper metal with the nanowire morphology remaining almost unchanged, although the copper metal nanowires are polycrystalline. The copper metal nanowires are also superhydrophobic after fluoroalkylthiol monolayer coating. The copper substrate with the superhydrophobic metal nanowires maintain the high thermal conductivity and effectively removes the condensed water droplet, being very suitable for heat exchanger applications with high efficiency. Aluminum is the most suitable metal to control the surface morphology by wet process. The author’s group successfully fabricated hierarchically micro-/nano-porous aluminum surface by a combination of chemical etching and anodizing in acid electrolytes. Micropits are developed by chemical etching containing HCl solution and the HCl concentration control the size of pits. Nanopores are generated by anodizing in sulfuric acid or oxalic acid, the pore widening process can be applied to control the pore size and porosity. The hierarchically porous aluminum surface is used to form super-repellency even for low surface tension liquids, including rapeseed oil (surface tension of 35 mN m –1 ), hexadecane (28 mN m –1 ), octane (22 mN m –1 ), and even hexane (18 mN m –1 ). The nanopores can be used to infiltrate the self-healing agent of organic coating, so that self-healing super-liquid-repellency occurs repeatedly even if the thin organic coating is damaged. The porous aluminum surface is also suitable for fabricating the slippery liquid infused porous surface (SLIPS) by impregnating a lubricant liquid into the pores. The SLIPS on aluminum show excellent liquid slipping property, anti-snow-sticking property, and high corrosion resistance. References T. Inoue, A. Koyama, D. Kowalski, C. Zhu, Y. Aoki and H. Habazaki, physica status solidi (a), 1900836 (2020). K. Nakayama, A. Koyama, C. Zhu, Y. Aoki and H. Habazaki, Advanced Materials Interfaces, 5, 1800566 (2018). K. Nakayama, E. Tsuji, Y. Aoki, S.-G. Park and H. Habazaki, The Journal of Physical Chemistry C, 120, 15684 (2016).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
清平道人完成签到,获得积分10
刚刚
1秒前
赘婿应助Frankyu采纳,获得10
1秒前
科研通AI2S应助无敌通采纳,获得10
1秒前
zhaosiqi完成签到 ,获得积分10
1秒前
xt_489完成签到,获得积分10
1秒前
wj发布了新的文献求助10
3秒前
王多肉发布了新的文献求助10
3秒前
dcx完成签到,获得积分10
3秒前
LYC完成签到,获得积分10
3秒前
Raven举报一支求助涉嫌违规
4秒前
卿君完成签到,获得积分10
4秒前
xiax03完成签到,获得积分10
4秒前
Daisy完成签到 ,获得积分10
4秒前
静曼完成签到,获得积分10
4秒前
一枚研究僧完成签到,获得积分0
4秒前
5秒前
5秒前
大叉烧完成签到,获得积分10
6秒前
海鸥完成签到,获得积分0
6秒前
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
听汐完成签到 ,获得积分10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
6秒前
子车茗应助科研通管家采纳,获得20
6秒前
子车茗应助科研通管家采纳,获得20
6秒前
英姑应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
7秒前
小瑜发布了新的文献求助10
7秒前
乐乐应助安寒采纳,获得10
7秒前
7秒前
李美美完成签到,获得积分10
7秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388268
求助须知:如何正确求助?哪些是违规求助? 4510318
关于积分的说明 14034886
捐赠科研通 4421132
什么是DOI,文献DOI怎么找? 2428650
邀请新用户注册赠送积分活动 1421284
关于科研通互助平台的介绍 1400517