Machine Learning Models for Estrogen Receptor Bioactivity and Endocrine Disruption Prediction

雌激素受体 雌激素 内分泌系统 内分泌干扰物 化学 计算生物学 计算机科学 生物 内分泌学 内科学 激素 医学 乳腺癌 癌症
作者
Kimberley M. Zorn,Daniel H. Foil,Thomas R. Lane,Daniel P. Russo,Wendy Hillwalker,David J. Feifarek,Frank E. Jones,William D. Klaren,Ashley M. Brinkman,Sean Ekins
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:54 (19): 12202-12213 被引量:38
标识
DOI:10.1021/acs.est.0c03982
摘要

The U.S. Environmental Protection Agency (EPA) periodically releases in vitro data across a variety of targets, including the estrogen receptor (ER). In 2015, the EPA used these data to construct mathematical models of ER agonist and antagonist pathways to prioritize chemicals for endocrine disruption testing. However, mathematical models require in vitro data prior to predicting estrogenic activity, but machine learning methods are capable of prospective prediction from the molecular structure alone. The current study describes the generation and evaluation of Bayesian machine learning models grouped by the EPA's ER agonist pathway model using multiple data types with proprietary software, Assay Central. External predictions with three test sets of in vitro and in vivo reference chemicals with agonist activity classifications were compared to previous mathematical model publications. Training data sets were subjected to additional machine learning algorithms and compared with rank normalized scores of internal five-fold cross-validation statistics. External predictions were found to be comparable or superior to previous studies published by the EPA. When assessing six additional algorithms for the training data sets, Assay Central performed similarly at a reduced computational cost. This study demonstrates that machine learning can prioritize chemicals for future in vitro and in vivo testing of ER agonism.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小新XIAO完成签到,获得积分10
1秒前
shhoing应助persist采纳,获得10
1秒前
韩嘉琦发布了新的文献求助10
1秒前
jimmyhui完成签到,获得积分10
2秒前
2秒前
NexusExplorer应助科研小白采纳,获得10
2秒前
dddd发布了新的文献求助10
2秒前
2秒前
4秒前
4秒前
4秒前
5秒前
5秒前
6秒前
清爽的听云完成签到,获得积分10
6秒前
整齐听南完成签到,获得积分10
6秒前
ygh完成签到,获得积分10
7秒前
7秒前
一个饼完成签到,获得积分20
7秒前
打打应助Jie采纳,获得10
7秒前
Zhangzinan发布了新的文献求助10
8秒前
跳跃巨人发布了新的文献求助10
8秒前
qiuyue发布了新的文献求助10
8秒前
泠清完成签到 ,获得积分10
8秒前
8秒前
秦婉琦发布了新的文献求助30
8秒前
香蕉觅云应助宁琳采纳,获得10
8秒前
科研顺利完成签到,获得积分10
9秒前
呵呵哒完成签到,获得积分10
10秒前
文献狗完成签到,获得积分10
10秒前
虚心求学发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
加百莉发布了新的文献求助10
12秒前
CipherSage应助乐观的颦采纳,获得10
12秒前
呵呵哒发布了新的文献求助10
12秒前
13秒前
lili发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547929
求助须知:如何正确求助?哪些是违规求助? 4633375
关于积分的说明 14630983
捐赠科研通 4574989
什么是DOI,文献DOI怎么找? 2508795
邀请新用户注册赠送积分活动 1485047
关于科研通互助平台的介绍 1456075