Machine Learning Models for Estrogen Receptor Bioactivity and Endocrine Disruption Prediction

雌激素受体 雌激素 内分泌系统 内分泌干扰物 化学 计算生物学 计算机科学 生物 内分泌学 内科学 激素 医学 乳腺癌 癌症
作者
Kimberley M. Zorn,Daniel H. Foil,Thomas R. Lane,Daniel P. Russo,Wendy Hillwalker,David J. Feifarek,Frank E. Jones,William D. Klaren,Ashley M. Brinkman,Sean Ekins
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:54 (19): 12202-12213 被引量:38
标识
DOI:10.1021/acs.est.0c03982
摘要

The U.S. Environmental Protection Agency (EPA) periodically releases in vitro data across a variety of targets, including the estrogen receptor (ER). In 2015, the EPA used these data to construct mathematical models of ER agonist and antagonist pathways to prioritize chemicals for endocrine disruption testing. However, mathematical models require in vitro data prior to predicting estrogenic activity, but machine learning methods are capable of prospective prediction from the molecular structure alone. The current study describes the generation and evaluation of Bayesian machine learning models grouped by the EPA's ER agonist pathway model using multiple data types with proprietary software, Assay Central. External predictions with three test sets of in vitro and in vivo reference chemicals with agonist activity classifications were compared to previous mathematical model publications. Training data sets were subjected to additional machine learning algorithms and compared with rank normalized scores of internal five-fold cross-validation statistics. External predictions were found to be comparable or superior to previous studies published by the EPA. When assessing six additional algorithms for the training data sets, Assay Central performed similarly at a reduced computational cost. This study demonstrates that machine learning can prioritize chemicals for future in vitro and in vivo testing of ER agonism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
King发布了新的文献求助10
1秒前
bodhi完成签到,获得积分10
1秒前
柔弱雅彤发布了新的文献求助10
3秒前
小张吃不胖完成签到 ,获得积分10
4秒前
不安的翠容完成签到,获得积分10
6秒前
阔达凝天完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
风趣遥完成签到,获得积分10
7秒前
77发布了新的文献求助10
7秒前
华仔应助柔弱雅彤采纳,获得10
8秒前
烟花应助柔弱雅彤采纳,获得10
8秒前
DMTloveforever完成签到,获得积分10
8秒前
陶醉的冷梅完成签到,获得积分10
10秒前
22222发布了新的文献求助20
10秒前
btyjs完成签到,获得积分10
10秒前
哈哈发布了新的文献求助10
11秒前
科研通AI6应助草学研究采纳,获得10
12秒前
Ran发布了新的文献求助10
13秒前
鲁万仇发布了新的文献求助10
13秒前
WYW发布了新的文献求助10
15秒前
16秒前
JamesPei应助苗条的一兰采纳,获得20
17秒前
研友_VZG7GZ应助林鑫璐采纳,获得10
18秒前
Tokgo完成签到,获得积分10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
Jasper应助singlelx89采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
英姑应助科研通管家采纳,获得10
19秒前
20秒前
20秒前
Orange应助科研通管家采纳,获得10
20秒前
子车茗应助科研通管家采纳,获得30
20秒前
20秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226663
求助须知:如何正确求助?哪些是违规求助? 4398072
关于积分的说明 13688295
捐赠科研通 4262686
什么是DOI,文献DOI怎么找? 2339276
邀请新用户注册赠送积分活动 1336647
关于科研通互助平台的介绍 1292640