Machine Learning Models for Estrogen Receptor Bioactivity and Endocrine Disruption Prediction

雌激素受体 雌激素 内分泌系统 内分泌干扰物 化学 计算生物学 计算机科学 生物 内分泌学 内科学 激素 医学 乳腺癌 癌症
作者
Kimberley M. Zorn,Daniel H. Foil,Thomas R. Lane,Daniel P. Russo,Wendy Hillwalker,David J. Feifarek,Frank E. Jones,William D. Klaren,Ashley M. Brinkman,Sean Ekins
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:54 (19): 12202-12213 被引量:38
标识
DOI:10.1021/acs.est.0c03982
摘要

The U.S. Environmental Protection Agency (EPA) periodically releases in vitro data across a variety of targets, including the estrogen receptor (ER). In 2015, the EPA used these data to construct mathematical models of ER agonist and antagonist pathways to prioritize chemicals for endocrine disruption testing. However, mathematical models require in vitro data prior to predicting estrogenic activity, but machine learning methods are capable of prospective prediction from the molecular structure alone. The current study describes the generation and evaluation of Bayesian machine learning models grouped by the EPA's ER agonist pathway model using multiple data types with proprietary software, Assay Central. External predictions with three test sets of in vitro and in vivo reference chemicals with agonist activity classifications were compared to previous mathematical model publications. Training data sets were subjected to additional machine learning algorithms and compared with rank normalized scores of internal five-fold cross-validation statistics. External predictions were found to be comparable or superior to previous studies published by the EPA. When assessing six additional algorithms for the training data sets, Assay Central performed similarly at a reduced computational cost. This study demonstrates that machine learning can prioritize chemicals for future in vitro and in vivo testing of ER agonism.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
善学以致用应助上上签采纳,获得10
刚刚
刚刚
1秒前
taoatao发布了新的文献求助10
1秒前
zzz发布了新的文献求助10
1秒前
小猴子应助糖炒小白云采纳,获得10
1秒前
科研通AI6应助xyh采纳,获得10
2秒前
2秒前
善学以致用应助可达燊采纳,获得10
2秒前
2秒前
crank发布了新的文献求助10
3秒前
3秒前
幽默不评完成签到 ,获得积分10
3秒前
慕青应助眼睛大的比巴卜采纳,获得10
3秒前
星辰大海应助zjq采纳,获得10
4秒前
vina发布了新的文献求助10
4秒前
乐观的灭龙完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
su完成签到 ,获得积分10
4秒前
大方岩完成签到,获得积分10
4秒前
4秒前
自信彩虹完成签到 ,获得积分10
4秒前
支半雪发布了新的文献求助10
4秒前
领导范儿应助清秀的断天采纳,获得10
5秒前
5秒前
三木发布了新的文献求助10
5秒前
菠萝水手完成签到,获得积分10
6秒前
bhhyyy发布了新的文献求助10
6秒前
6秒前
努力学习完成签到,获得积分10
7秒前
达雨发布了新的文献求助10
7秒前
汉堡包应助wzz采纳,获得10
7秒前
7秒前
7秒前
VVV发布了新的文献求助10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577090
求助须知:如何正确求助?哪些是违规求助? 4662349
关于积分的说明 14741219
捐赠科研通 4602974
什么是DOI,文献DOI怎么找? 2526066
邀请新用户注册赠送积分活动 1495974
关于科研通互助平台的介绍 1465478