Machine Learning Models for Estrogen Receptor Bioactivity and Endocrine Disruption Prediction

雌激素受体 雌激素 内分泌系统 内分泌干扰物 化学 计算生物学 计算机科学 生物 内分泌学 内科学 激素 医学 乳腺癌 癌症
作者
Kimberley M. Zorn,Daniel H. Foil,Thomas R. Lane,Daniel P. Russo,Wendy Hillwalker,David J. Feifarek,Frank E. Jones,William D. Klaren,Ashley M. Brinkman,Sean Ekins
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:54 (19): 12202-12213 被引量:38
标识
DOI:10.1021/acs.est.0c03982
摘要

The U.S. Environmental Protection Agency (EPA) periodically releases in vitro data across a variety of targets, including the estrogen receptor (ER). In 2015, the EPA used these data to construct mathematical models of ER agonist and antagonist pathways to prioritize chemicals for endocrine disruption testing. However, mathematical models require in vitro data prior to predicting estrogenic activity, but machine learning methods are capable of prospective prediction from the molecular structure alone. The current study describes the generation and evaluation of Bayesian machine learning models grouped by the EPA's ER agonist pathway model using multiple data types with proprietary software, Assay Central. External predictions with three test sets of in vitro and in vivo reference chemicals with agonist activity classifications were compared to previous mathematical model publications. Training data sets were subjected to additional machine learning algorithms and compared with rank normalized scores of internal five-fold cross-validation statistics. External predictions were found to be comparable or superior to previous studies published by the EPA. When assessing six additional algorithms for the training data sets, Assay Central performed similarly at a reduced computational cost. This study demonstrates that machine learning can prioritize chemicals for future in vitro and in vivo testing of ER agonism.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
1秒前
小龚小龚完成签到 ,获得积分10
1秒前
嘟嘟完成签到,获得积分10
1秒前
科研一点也不通完成签到,获得积分20
2秒前
金平卢仙发布了新的文献求助30
3秒前
5秒前
yy发布了新的文献求助10
5秒前
5秒前
大模型应助老地方采纳,获得10
6秒前
借过123完成签到,获得积分10
6秒前
小郝已读博完成签到 ,获得积分10
6秒前
Colo完成签到,获得积分10
6秒前
小蘑菇应助TeeteePor采纳,获得10
7秒前
7秒前
Akim应助shuangcheng采纳,获得10
8秒前
10秒前
11秒前
11秒前
科研通AI2S应助睡一觉算了采纳,获得10
12秒前
12秒前
13秒前
14秒前
Lamb发布了新的文献求助10
14秒前
14秒前
why完成签到,获得积分10
15秒前
老地方完成签到,获得积分10
16秒前
今后应助欣喜咖啡采纳,获得30
16秒前
Hello应助西西采纳,获得10
18秒前
18秒前
老地方发布了新的文献求助10
18秒前
19秒前
20秒前
科研通AI6应助phil采纳,获得10
20秒前
自由的蒜苗完成签到,获得积分10
21秒前
23秒前
gggghhhh发布了新的文献求助10
23秒前
meng驳回了英姑应助
24秒前
24秒前
Lucas应助淡然的如天采纳,获得10
24秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499570
求助须知:如何正确求助?哪些是违规求助? 4596391
关于积分的说明 14454281
捐赠科研通 4529548
什么是DOI,文献DOI怎么找? 2482060
邀请新用户注册赠送积分活动 1466041
关于科研通互助平台的介绍 1438891