Machine Learning Models for Estrogen Receptor Bioactivity and Endocrine Disruption Prediction

雌激素受体 雌激素 内分泌系统 内分泌干扰物 化学 计算生物学 计算机科学 生物 内分泌学 内科学 激素 医学 乳腺癌 癌症
作者
Kimberley M. Zorn,Daniel H. Foil,Thomas R. Lane,Daniel P. Russo,Wendy Hillwalker,David J. Feifarek,Frank E. Jones,William D. Klaren,Ashley M. Brinkman,Sean Ekins
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:54 (19): 12202-12213 被引量:38
标识
DOI:10.1021/acs.est.0c03982
摘要

The U.S. Environmental Protection Agency (EPA) periodically releases in vitro data across a variety of targets, including the estrogen receptor (ER). In 2015, the EPA used these data to construct mathematical models of ER agonist and antagonist pathways to prioritize chemicals for endocrine disruption testing. However, mathematical models require in vitro data prior to predicting estrogenic activity, but machine learning methods are capable of prospective prediction from the molecular structure alone. The current study describes the generation and evaluation of Bayesian machine learning models grouped by the EPA's ER agonist pathway model using multiple data types with proprietary software, Assay Central. External predictions with three test sets of in vitro and in vivo reference chemicals with agonist activity classifications were compared to previous mathematical model publications. Training data sets were subjected to additional machine learning algorithms and compared with rank normalized scores of internal five-fold cross-validation statistics. External predictions were found to be comparable or superior to previous studies published by the EPA. When assessing six additional algorithms for the training data sets, Assay Central performed similarly at a reduced computational cost. This study demonstrates that machine learning can prioritize chemicals for future in vitro and in vivo testing of ER agonism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眼睛大又蓝完成签到,获得积分10
刚刚
kangkang完成签到,获得积分10
刚刚
1秒前
1秒前
绵绵完成签到,获得积分10
1秒前
2秒前
Mlwwq完成签到,获得积分10
2秒前
2秒前
小皮蛋儿完成签到,获得积分10
2秒前
lyn发布了新的文献求助10
2秒前
JUSTs0so完成签到,获得积分10
3秒前
失联者完成签到,获得积分10
3秒前
感性的神级完成签到,获得积分10
3秒前
眯眯眼的谷冬完成签到 ,获得积分10
3秒前
3秒前
花莫凋零发布了新的文献求助10
4秒前
szh123完成签到,获得积分10
4秒前
4秒前
安息香发布了新的文献求助10
4秒前
核桃完成签到,获得积分10
4秒前
丹dan发布了新的文献求助10
4秒前
4秒前
科研通AI5应助大方嵩采纳,获得10
5秒前
5秒前
HYG发布了新的文献求助30
5秒前
5秒前
宝贝发布了新的文献求助10
5秒前
FashionBoy应助tulip采纳,获得10
5秒前
万泉部诗人完成签到,获得积分10
6秒前
文静千愁发布了新的文献求助10
6秒前
YAN发布了新的文献求助10
6秒前
马洛发布了新的文献求助10
6秒前
6秒前
qiqi完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
喻辰星发布了新的文献求助10
8秒前
jasmine970000完成签到,获得积分10
8秒前
神勇的雅香应助zhanzhanzhan采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762