亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Models for Estrogen Receptor Bioactivity and Endocrine Disruption Prediction

雌激素受体 雌激素 内分泌系统 内分泌干扰物 化学 计算生物学 计算机科学 生物 内分泌学 内科学 激素 医学 乳腺癌 癌症
作者
Kimberley M. Zorn,Daniel H. Foil,Thomas R. Lane,Daniel P. Russo,Wendy Hillwalker,David J. Feifarek,Frank E. Jones,William D. Klaren,Ashley M. Brinkman,Sean Ekins
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:54 (19): 12202-12213 被引量:38
标识
DOI:10.1021/acs.est.0c03982
摘要

The U.S. Environmental Protection Agency (EPA) periodically releases in vitro data across a variety of targets, including the estrogen receptor (ER). In 2015, the EPA used these data to construct mathematical models of ER agonist and antagonist pathways to prioritize chemicals for endocrine disruption testing. However, mathematical models require in vitro data prior to predicting estrogenic activity, but machine learning methods are capable of prospective prediction from the molecular structure alone. The current study describes the generation and evaluation of Bayesian machine learning models grouped by the EPA's ER agonist pathway model using multiple data types with proprietary software, Assay Central. External predictions with three test sets of in vitro and in vivo reference chemicals with agonist activity classifications were compared to previous mathematical model publications. Training data sets were subjected to additional machine learning algorithms and compared with rank normalized scores of internal five-fold cross-validation statistics. External predictions were found to be comparable or superior to previous studies published by the EPA. When assessing six additional algorithms for the training data sets, Assay Central performed similarly at a reduced computational cost. This study demonstrates that machine learning can prioritize chemicals for future in vitro and in vivo testing of ER agonism.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
movoandy完成签到,获得积分10
9秒前
9秒前
movoandy发布了新的文献求助10
14秒前
章鱼完成签到,获得积分10
19秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
情怀应助科研通管家采纳,获得10
25秒前
27秒前
无奈惜萱完成签到,获得积分20
28秒前
香蕉觅云应助metro采纳,获得10
30秒前
36秒前
36秒前
43秒前
ARESCI发布了新的文献求助10
48秒前
ARESCI完成签到,获得积分20
52秒前
1分钟前
李爱国应助ARESCI采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
metro发布了新的文献求助10
2分钟前
圆滚滚的大肥猫完成签到,获得积分10
2分钟前
2分钟前
Ccccn完成签到,获得积分10
2分钟前
2分钟前
完美世界应助Hillson采纳,获得10
2分钟前
搜集达人应助PenguinC采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
PenguinC发布了新的文献求助10
3分钟前
3分钟前
3分钟前
秋刀鱼发布了新的文献求助10
4分钟前
酷炫小懒虫完成签到,获得积分0
4分钟前
加菲丰丰完成签到,获得积分0
4分钟前
充电宝应助Hoshino采纳,获得10
4分钟前
Yini应助FIN采纳,获得50
4分钟前
5分钟前
共享精神应助kevin采纳,获得30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554913
求助须知:如何正确求助?哪些是违规求助? 4639496
关于积分的说明 14656244
捐赠科研通 4581411
什么是DOI,文献DOI怎么找? 2512745
邀请新用户注册赠送积分活动 1487485
关于科研通互助平台的介绍 1458439