Machine Learning Models for Estrogen Receptor Bioactivity and Endocrine Disruption Prediction

雌激素受体 雌激素 内分泌系统 内分泌干扰物 化学 计算生物学 计算机科学 生物 内分泌学 内科学 激素 医学 乳腺癌 癌症
作者
Kimberley M. Zorn,Daniel H. Foil,Thomas R. Lane,Daniel P. Russo,Wendy Hillwalker,David J. Feifarek,Frank E. Jones,William D. Klaren,Ashley M. Brinkman,Sean Ekins
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:54 (19): 12202-12213 被引量:38
标识
DOI:10.1021/acs.est.0c03982
摘要

The U.S. Environmental Protection Agency (EPA) periodically releases in vitro data across a variety of targets, including the estrogen receptor (ER). In 2015, the EPA used these data to construct mathematical models of ER agonist and antagonist pathways to prioritize chemicals for endocrine disruption testing. However, mathematical models require in vitro data prior to predicting estrogenic activity, but machine learning methods are capable of prospective prediction from the molecular structure alone. The current study describes the generation and evaluation of Bayesian machine learning models grouped by the EPA's ER agonist pathway model using multiple data types with proprietary software, Assay Central. External predictions with three test sets of in vitro and in vivo reference chemicals with agonist activity classifications were compared to previous mathematical model publications. Training data sets were subjected to additional machine learning algorithms and compared with rank normalized scores of internal five-fold cross-validation statistics. External predictions were found to be comparable or superior to previous studies published by the EPA. When assessing six additional algorithms for the training data sets, Assay Central performed similarly at a reduced computational cost. This study demonstrates that machine learning can prioritize chemicals for future in vitro and in vivo testing of ER agonism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
whatever应助科研通管家采纳,获得20
刚刚
Hello应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
所所应助iufan采纳,获得10
刚刚
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
领导范儿应助11采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
初七123完成签到 ,获得积分10
1秒前
山山而川完成签到,获得积分20
2秒前
3秒前
可乐就是力量z完成签到,获得积分10
3秒前
爆米花应助小舒采纳,获得10
3秒前
皮蛋努力科研完成签到 ,获得积分10
4秒前
洛杉矶的奥斯卡完成签到,获得积分10
4秒前
天天快乐应助tytrack采纳,获得10
4秒前
zhou完成签到,获得积分10
4秒前
NexusExplorer应助肖肖子采纳,获得10
4秒前
弥豆子完成签到,获得积分10
4秒前
qqq发布了新的文献求助10
5秒前
5秒前
粥粥完成签到,获得积分20
5秒前
in应助jianghs采纳,获得10
5秒前
猫大熊完成签到,获得积分10
5秒前
6秒前
科研小白完成签到 ,获得积分10
7秒前
阿恺发布了新的文献求助10
7秒前
7秒前
CipherSage应助諵十一采纳,获得10
8秒前
8秒前
8秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134421
求助须知:如何正确求助?哪些是违规求助? 2785363
关于积分的说明 7771655
捐赠科研通 2440968
什么是DOI,文献DOI怎么找? 1297647
科研通“疑难数据库(出版商)”最低求助积分说明 625023
版权声明 600812