Machine Learning Models for Estrogen Receptor Bioactivity and Endocrine Disruption Prediction

雌激素受体 雌激素 内分泌系统 内分泌干扰物 化学 计算生物学 计算机科学 生物 内分泌学 内科学 激素 医学 乳腺癌 癌症
作者
Kimberley M. Zorn,Daniel H. Foil,Thomas R. Lane,Daniel P. Russo,Wendy Hillwalker,David J. Feifarek,Frank E. Jones,William D. Klaren,Ashley M. Brinkman,Sean Ekins
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:54 (19): 12202-12213 被引量:38
标识
DOI:10.1021/acs.est.0c03982
摘要

The U.S. Environmental Protection Agency (EPA) periodically releases in vitro data across a variety of targets, including the estrogen receptor (ER). In 2015, the EPA used these data to construct mathematical models of ER agonist and antagonist pathways to prioritize chemicals for endocrine disruption testing. However, mathematical models require in vitro data prior to predicting estrogenic activity, but machine learning methods are capable of prospective prediction from the molecular structure alone. The current study describes the generation and evaluation of Bayesian machine learning models grouped by the EPA's ER agonist pathway model using multiple data types with proprietary software, Assay Central. External predictions with three test sets of in vitro and in vivo reference chemicals with agonist activity classifications were compared to previous mathematical model publications. Training data sets were subjected to additional machine learning algorithms and compared with rank normalized scores of internal five-fold cross-validation statistics. External predictions were found to be comparable or superior to previous studies published by the EPA. When assessing six additional algorithms for the training data sets, Assay Central performed similarly at a reduced computational cost. This study demonstrates that machine learning can prioritize chemicals for future in vitro and in vivo testing of ER agonism.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
able完成签到 ,获得积分10
1秒前
2秒前
嗯嗯嗯发布了新的文献求助10
3秒前
丘比特应助度ewf采纳,获得10
4秒前
丽丽丽发布了新的文献求助10
4秒前
yyanxuemin919发布了新的文献求助10
4秒前
蘑菇完成签到 ,获得积分10
7秒前
jam发布了新的文献求助10
7秒前
8秒前
烟花应助ccc采纳,获得10
9秒前
拉长的诗蕊完成签到,获得积分10
9秒前
10秒前
大妙妙完成签到 ,获得积分10
13秒前
13秒前
里里完成签到 ,获得积分10
14秒前
韩妙发布了新的文献求助10
15秒前
科研通AI6应助丽丽丽采纳,获得10
16秒前
太渊完成签到 ,获得积分10
16秒前
ccc发布了新的文献求助10
18秒前
爆米花应助chen采纳,获得10
21秒前
赘婿应助fahbfafajk采纳,获得10
23秒前
23秒前
李健应助韩妙采纳,获得10
24秒前
25秒前
27秒前
sun发布了新的文献求助10
28秒前
29秒前
29秒前
今天任务完成了吗完成签到,获得积分10
29秒前
XIEQ发布了新的文献求助10
29秒前
30秒前
32秒前
懒鲸鱼发布了新的文献求助10
33秒前
明兰发布了新的文献求助10
33秒前
yyanxuemin919发布了新的文献求助10
34秒前
34秒前
Andy发布了新的文献求助10
35秒前
36秒前
机智的雁荷完成签到 ,获得积分10
36秒前
jam完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432