Multi-level feature extraction model for high dimensional medical image features

计算机科学 人工智能 特征提取 特征(语言学) 计算机视觉 特征检测(计算机视觉) 模式识别(心理学) 图像自动标注 医学影像学 图像纹理 图像(数学) 图像检索 图像处理 语言学 哲学
作者
Mohd Nizam Saad,Mohamad Farhan Mohamad Mohsin,Hamzaini Bin Abdul Hamid,Zurina Muda
标识
DOI:10.1109/aidas47888.2019.8970698
摘要

Recent technology evolution has emerged many applications that consumed data in extremely highly dimensional. For medical images, outsourcing the computation of image feature extraction to the cloud has become common method in order to alleviate the heavy computation workload for local devices. However, unlike other images, the medical images content cannot be easily manipulated because they exist in visual presentation that cannot be explored with textual data in order to capture the visual structure of the image. Hence, appropriate features are required to classify these images. Feature extraction for medical images based on image shape, color and texture using machine learning can improve the performance to categorize image features into homogeneous group. Feature extraction automatically learn and recognize complex patterns and make intelligent decisions based on features attributes. Therefore, this proposed a multi-level feature extraction model for high dimensional medical image features. By applying the multi-level model, features from medical images are extracted from general image features into specific features category. Later, a specified features categories are assigned to the image so that the image presentation can become more meaningful and assist the performance of image classification. We expect the findings derived from our method provides new approaches for extracting medical image features from big data source. It also improve the relevance and quality of image classification, thus enhance performance of medical imaging in the radiology service.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hhm发布了新的文献求助10
刚刚
穆易羊完成签到 ,获得积分10
1秒前
在水一方应助Gnor采纳,获得10
1秒前
1秒前
2秒前
lqkcqmu发布了新的文献求助10
2秒前
z掌握一下发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
852应助杭啊采纳,获得10
3秒前
3秒前
vikki发布了新的文献求助30
4秒前
4秒前
5秒前
5秒前
在水一方应助小马过河采纳,获得10
5秒前
molec完成签到,获得积分10
5秒前
蜡笔小舒完成签到,获得积分10
5秒前
6秒前
俭朴的新柔完成签到,获得积分10
6秒前
曹国庆完成签到 ,获得积分10
7秒前
7秒前
百里丹珍完成签到,获得积分10
7秒前
8秒前
8秒前
hokin33发布了新的文献求助10
9秒前
JM完成签到,获得积分10
10秒前
10秒前
okil2完成签到,获得积分10
10秒前
子唯完成签到,获得积分10
11秒前
hehe发布了新的文献求助10
11秒前
巫凝天完成签到,获得积分10
11秒前
liu完成签到,获得积分10
12秒前
12秒前
12秒前
七柒完成签到,获得积分20
13秒前
Lucas应助abc采纳,获得10
13秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650