亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-level feature extraction model for high dimensional medical image features

计算机科学 人工智能 特征提取 特征(语言学) 计算机视觉 特征检测(计算机视觉) 模式识别(心理学) 图像自动标注 医学影像学 图像纹理 图像(数学) 图像检索 图像处理 哲学 语言学
作者
Mohd Nizam Saad,Mohamad Farhan Mohamad Mohsin,Hamzaini Bin Abdul Hamid,Zurina Muda
标识
DOI:10.1109/aidas47888.2019.8970698
摘要

Recent technology evolution has emerged many applications that consumed data in extremely highly dimensional. For medical images, outsourcing the computation of image feature extraction to the cloud has become common method in order to alleviate the heavy computation workload for local devices. However, unlike other images, the medical images content cannot be easily manipulated because they exist in visual presentation that cannot be explored with textual data in order to capture the visual structure of the image. Hence, appropriate features are required to classify these images. Feature extraction for medical images based on image shape, color and texture using machine learning can improve the performance to categorize image features into homogeneous group. Feature extraction automatically learn and recognize complex patterns and make intelligent decisions based on features attributes. Therefore, this proposed a multi-level feature extraction model for high dimensional medical image features. By applying the multi-level model, features from medical images are extracted from general image features into specific features category. Later, a specified features categories are assigned to the image so that the image presentation can become more meaningful and assist the performance of image classification. We expect the findings derived from our method provides new approaches for extracting medical image features from big data source. It also improve the relevance and quality of image classification, thus enhance performance of medical imaging in the radiology service.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
疯狂老登发布了新的文献求助10
7秒前
12秒前
17秒前
35秒前
Zhangfu完成签到,获得积分10
39秒前
40秒前
40秒前
oleskarabach发布了新的文献求助10
45秒前
47秒前
七色光完成签到,获得积分10
52秒前
夏花般灿烂完成签到,获得积分10
53秒前
Yuki完成签到 ,获得积分10
59秒前
1分钟前
ptyz霍建华完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
小熊完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小宇完成签到,获得积分10
1分钟前
现代代桃完成签到 ,获得积分10
1分钟前
1分钟前
slby完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
怕孤独的小鸭子完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Zz发布了新的文献求助10
2分钟前
阿童木完成签到 ,获得积分10
2分钟前
Zz完成签到,获得积分20
2分钟前
YifanWang完成签到,获得积分0
3分钟前
踏云完成签到 ,获得积分10
3分钟前
花城诚成完成签到,获得积分10
3分钟前
3分钟前
3分钟前
粗暴的坤发布了新的文献求助10
3分钟前
陶醉谷秋发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788626
求助须知:如何正确求助?哪些是违规求助? 5709683
关于积分的说明 15473737
捐赠科研通 4916631
什么是DOI,文献DOI怎么找? 2646497
邀请新用户注册赠送积分活动 1594168
关于科研通互助平台的介绍 1548580