The effect of Ag@SiO2 core‐shell nanoparticles on the dielectric properties of PVDF based nanocomposites

材料科学 电介质 复合材料 纳米复合材料 纳米颗粒 聚合物 介电损耗 纳米技术 光电子学
作者
Ling Weng,Xiaoming Wang,Xiaorui Zhang,Lizhu Guan,Lizhu Liu,Hexin Zhang,Weiwei Cui
出处
期刊:Polymer Composites [Wiley]
卷期号:41 (6): 2245-2253 被引量:30
标识
DOI:10.1002/pc.25535
摘要

Abstract High dielectric properties material has a profound influence on the development of electronic power system, polymer based composites obtained a great number of achievements on it. A new strategy, which covered a layer of insulation on the surface of the inorganic particles to form a core‐shell structure, then used it for composites is a good choice. In this article, a series of PVDF based nanocomposite with different contents were prepared by using PVDF flexible polymer as substrate and core‐shell structure Ag@SiO 2 nanoparticles as fillers. The effects of Ag@SiO 2 core‐shell nanoparticles on the structure and properties of composites were investigated. Results showed that Ag@SiO 2 has a typical core‐shell structure and the diameter size of Ag@SiO 2 nanoparticles is 100 nm in average with about 20 nm thickness of SiO 2 shell. XRD analysis showed that the addition of Ag@SiO 2 nanoparticles induce a transition on crystal structure of PVDF from multiphase to mainly β phase, which result in an improvement on ferroelectric properties of composites. Broadband dielectric spectroscopy results indicate that the dielectric constant and dielectric loss of nanocomposites are positively correlated with the filler's contents. The tested dielectric constant of composites increase from 8.42 (5 wt% fillers content) to 10.1 (20 wt% fillers' content), coupled with an increase on electrical breakdown strength from 21.22 to 31.46 kV/mm. The calculated energy density also increases from 0.016777 to 0.044234 J/cm 3 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
钟是一梦完成签到,获得积分10
1秒前
1秒前
wanci应助Ll采纳,获得10
1秒前
2秒前
2秒前
孟柠柠发布了新的文献求助10
2秒前
青阳完成签到,获得积分10
3秒前
科研狗发布了新的文献求助20
4秒前
5秒前
5秒前
jarenthar完成签到 ,获得积分10
5秒前
5秒前
丘比特应助hata采纳,获得10
5秒前
顾矜应助lszhw采纳,获得10
6秒前
lqq完成签到 ,获得积分10
6秒前
6秒前
共享精神应助拟拟采纳,获得10
6秒前
6秒前
lhy12345完成签到,获得积分10
6秒前
非常可爱发布了新的文献求助20
7秒前
7秒前
7秒前
7秒前
科研民工发布了新的文献求助10
8秒前
文艺的初蓝完成签到 ,获得积分10
8秒前
TiAmo发布了新的文献求助10
8秒前
刘十三完成签到,获得积分10
8秒前
8秒前
犹豫忆南完成签到,获得积分10
9秒前
科研通AI5应助kingwhitewing采纳,获得10
10秒前
10秒前
mm关注了科研通微信公众号
10秒前
xieyuanxing发布了新的文献求助10
10秒前
10秒前
左然然完成签到,获得积分10
10秒前
10秒前
人福药业完成签到,获得积分10
11秒前
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740