Bayesian Neural Networks of Probabilistic Back Propagation for Scalable Learning on Hyper-Parameters

人工神经网络 概率逻辑 人工智能 计算机科学 机器学习 可扩展性 贝叶斯概率 反向传播 贝叶斯网络 数据库
作者
K. Thirupal Reddy,T. Swarnalatha
出处
期刊:Intelligent systems reference library 卷期号:: 47-57 被引量:1
标识
DOI:10.1007/978-3-030-32644-9_6
摘要

Extensive multilayer neural systems prepared with back proliferation have as of late accomplished best in class results in some of issues. This portrays and examines Bayesian Neural Network (BNN). The work shows a couple of various uses of them for grouping and relapse issues. BNNs are included a Probabilistic Model and a Neural Network. The plan of such a plan is to join the qualities of Neural Networks and stochastic demonstrating. Neural Networks display ceaseless capacity approximates abilities. Be that as it may, utilizing back drop for neural networks adapting still has a few disservices, e.g., tuning a substantial figure of hyper-parameters to the information, absence of aligned probabilistic forecasts, and a propensity to over fit the preparation information. The Bayesian way to deal with learning neural systems does not have these issues. Nonetheless, existing Bayesian systems need versatility to expansive dataset and system sizes. In this work we present a novel versatile strategy for learning Bayesian neural systems, got back to probabilistic engendering (PBP). Like traditional back spread, PBP works by figuring a forward engendering of probabilities through the system and afterward completing a retrogressive calculation of inclinations. A progression of analyses on ten true datasets demonstrates that PBP is essentially quicker than different methods, while offering aggressive prescient capacities. Our examination additionally demonstrates that PBP-BNN gives precise appraisals of the back change on the system weights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
科研通AI5应助长隆采纳,获得10
2秒前
alpha完成签到 ,获得积分10
3秒前
夜月残阳完成签到,获得积分10
3秒前
4秒前
田様应助红箭烟雨采纳,获得10
4秒前
菜不透发布了新的文献求助10
4秒前
1112发布了新的文献求助10
7秒前
alpha关注了科研通微信公众号
7秒前
CC发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
Ren完成签到,获得积分10
9秒前
小二郎应助LQ采纳,获得10
11秒前
往返发布了新的文献求助10
12秒前
tears完成签到,获得积分20
13秒前
Hodlumm发布了新的文献求助10
14秒前
15秒前
CC完成签到,获得积分10
15秒前
DDDDJ完成签到 ,获得积分10
16秒前
16秒前
欢喜的之瑶完成签到,获得积分10
16秒前
浮生若梦完成签到 ,获得积分10
16秒前
17秒前
18秒前
温良和风完成签到,获得积分10
19秒前
20秒前
夏荷雪石完成签到,获得积分10
22秒前
LQ发布了新的文献求助10
24秒前
24秒前
25秒前
25秒前
26秒前
LQ发布了新的文献求助10
28秒前
循环bug完成签到,获得积分10
29秒前
哈哈哈发布了新的文献求助10
29秒前
30秒前
YuhaoYan发布了新的文献求助20
30秒前
30秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979763
求助须知:如何正确求助?哪些是违规求助? 3523767
关于积分的说明 11218570
捐赠科研通 3261233
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879121
科研通“疑难数据库(出版商)”最低求助积分说明 807182