Departure Time Choice Models in Urban Transportation Systems Based on Mean Field Games

排队 数学优化 计算机科学 博弈论 点(几何) 领域(数学) 数理经济学 数学 几何学 程序设计语言 纯数学
作者
Mostafa Ameli,Mohamad Sadegh Shirani Faradonbeh,Jean‐Patrick Lebacque,Hossein Abouee‐Mehrizi,Ludovic Leclercq
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:56 (6): 1483-1504 被引量:23
标识
DOI:10.1287/trsc.2022.1147
摘要

Departure time choice models play a crucial role in determining the traffic load in transportation systems. Most studies that consider departure time user equilibrium (DTUE) problems make assumptions on the user characteristics (e.g., distribution of desired arrival time and trip length) or dynamic traffic model (e.g., classic bathtub or point queue models) in order to analyze the problem. This paper relaxes these assumptions and introduces a new framework to model and analyze the DTUE problem based on the so-called mean field games (MFGs) theory. MFGs allow us to define players at the microscopic level similar to classical game theory models, translating the effect of players’ decisions to macroscopic models. In this paper, we first present a continuous departure time choice model and investigate the equilibria of the system. Specifically, we demonstrate the existence of the equilibrium and characterize the DTUE. Then, a discrete approximation of the system is provided based on deterministic differential game models to numerically obtain the equilibrium of the system. To examine the efficiency of the proposed model, we compare it with the departure time choice models in the literature. We apply our framework to a standard test case and observe that the solutions obtained based on our model are 5.6% better in terms of relative cost compared with the solutions determined based on previous studies. Moreover, our proposed model converges with fewer iterations than the reference solution method in the literature. Finally, the model is scaled up to the real test case corresponding to the whole Lyon metropolis with a real demand pattern. The results show that the proposed framework is able to tackle a much larger test case than usual to include multiple preferred travel times and heterogeneous trip lengths more accurately than existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助马超采纳,获得10
1秒前
2秒前
ZZZ完成签到,获得积分10
2秒前
所所应助叶子采纳,获得10
2秒前
小马甲应助Ruuko采纳,获得10
3秒前
田様应助小杨采纳,获得10
4秒前
兴奋涵雁发布了新的文献求助10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
Yxy完成签到,获得积分10
4秒前
大个应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
4秒前
无花果应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
5秒前
Rita应助科研通管家采纳,获得10
5秒前
雨夜星空应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
5秒前
9秒前
李健的小迷弟应助山川采纳,获得10
15秒前
叶子发布了新的文献求助10
15秒前
ding应助白纸星星采纳,获得10
17秒前
sunyexuan发布了新的文献求助10
17秒前
大气惜天完成签到 ,获得积分10
17秒前
19秒前
Ruuko发布了新的文献求助10
24秒前
Akim应助Ken921319005采纳,获得30
30秒前
30秒前
lixl0725完成签到 ,获得积分10
30秒前
不想起昵称完成签到 ,获得积分10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775692
求助须知:如何正确求助?哪些是违规求助? 3321247
关于积分的说明 10204384
捐赠科研通 3036169
什么是DOI,文献DOI怎么找? 1666017
邀请新用户注册赠送积分活动 797250
科研通“疑难数据库(出版商)”最低求助积分说明 757777