清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Efficient Real-Time Human Detection Using Unmanned Aerial Vehicles Optical Imagery

计算机科学 架空(工程) 人工智能 深度学习 搜救 计算机视觉 人工神经网络 实时计算 点(几何) 模式识别(心理学) 机器人 几何学 数学 操作系统
作者
Gelayol Golkarnarenji,Ignacio Martinez‐Alpiste,Qi Wang,Jose M. Alcaraz‐Calero
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:42 (7): 2440-2462 被引量:14
标识
DOI:10.1080/01431161.2020.1862435
摘要

Unmanned Aerial Vehicles (UAVs) are promising technologies within many different application scenarios including human detection in search and rescue and surveillance use cases, which have received considerable attention worldwide. However, adverse conditions, such as varying altitude, overhead camera placement, changing illumination and moving platform, impose challenges for high-performance yet cost-efficient human detection. To overcome these challenges, we propose a novel combination of dilated convolutions with Path Aggregation Network (PAN) as a new deep neural network-based human detection algorithm in real time. Furthermore, we establish a comprehensive human detection dataset with varying backgrounds, illuminations, and contrast and train the proposed machine-learning model on the collected dataset. Our approach achieves both high precision (88.0% mean Average Precision (mAP)) and real time (67.0 Frames Per Second (FPS)) on a commercial off-the-shelf PC platform. In terms of accuracy, the result is comparable to the standard You Only Look Once v3 (YOLOv3). However, the speed is twice as that of the standard YOLOv3. YOLOv4 is slightly more accurate (89.8%) than our approach. However, it is slower (38.0 versus 67.0 FPS) and has more Billion Floating-Point Operations (BFLOPS). The proposed algorithm has also trained with the VisDrone2019 dataset and compared with seven studies using this dataset. The results have further validated the effectiveness of the proposed approach. Moreover, the algorithm has been evaluated on an embedded system (Jetson AGX Xavier), which demonstrates the usefulness of this method on power-constrained devices. The proposed algorithm is fast, memory efficient, and computationally less expensive to achieve high detection performance. It is expected to contribute significantly to the wider use of UAV applications including search and rescue missions to locate missing people, and surveillance particularly for applications running on resource-constrained platforms, like smartphones or tablets. This proposed system is now being used in aerial drone system of Police of Scotland to help them locate and find missing and vulnerable people. The results of the project were broadcasted by BBC Scotland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初心路完成签到 ,获得积分10
7秒前
遥感小虫发布了新的文献求助10
13秒前
遥感小虫完成签到,获得积分10
25秒前
35秒前
默默尔安完成签到 ,获得积分10
35秒前
gmc完成签到 ,获得积分10
50秒前
55秒前
1分钟前
1分钟前
东方欲晓完成签到 ,获得积分0
1分钟前
小西完成签到 ,获得积分10
1分钟前
2分钟前
XC完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
4分钟前
4分钟前
huangzsdy完成签到,获得积分10
5分钟前
5分钟前
6分钟前
jun完成签到,获得积分10
6分钟前
6分钟前
6分钟前
明理从露完成签到 ,获得积分10
6分钟前
勤劳的木木完成签到 ,获得积分10
6分钟前
7分钟前
舒适涵山完成签到,获得积分10
7分钟前
爱静静应助breeze采纳,获得10
7分钟前
Zhangfu完成签到,获得积分10
7分钟前
7分钟前
7分钟前
8分钟前
8分钟前
9分钟前
9分钟前
薏仁完成签到 ,获得积分10
9分钟前
17852573662完成签到,获得积分10
10分钟前
muriel完成签到,获得积分10
11分钟前
11分钟前
11分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162343
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899736
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142