Reconstruction enhanced probabilistic model for semisupervised tongue image segmentation

人工智能 分割 计算机科学 舌头 鉴别器 模式识别(心理学) 尺度空间分割 图像分割 计算机视觉 基于分割的对象分类 基本事实 语言学 电信 探测器 哲学
作者
Changèn Zhou,Haoyi Fan,Wen Zhao,Hongben Xu,Huangwei Lei,Zhaoyang Yang,Zuoyong Li,Candong Li
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:32 (22) 被引量:11
标识
DOI:10.1002/cpe.5844
摘要

Summary Tongue segmentation is a key step of automatic tongue diagnosis, and the major challenges for the effective segmentation lie in the large appearance variations of tongue caused by different diseases, for example, tongue coating and tongue texture. Moreover, the limited labeled data also hinders traditional supervised methods from their powerful learning ability. To alleviate these challenges, in this work, we propose a reconstruction enhanced probabilistic model for semisupervised tongue segmentation, named SemiTongue, in which, image reconstruction constraint combined with adversarial learning is used to improve the accuracy of tongue segmentation. Specifically, based on a shared feature encoder that served as an inference model, two separate branches in SemiTongue as the generative model, which are composed of a segmentation decoder and a reconstruction decoder, are utilized to generate the tongue segmentation and reconstruct original tongue image respectively. Then, a discriminator is employed to differentiate the generated segmentation map from the ground truth segmentation distribution. Moreover, semisupervised learning is conducted through discriminator by discovering the reliable region in the generated segmentation map of unlabeled images, which is further utilized to supervise the segmentation branch. Experimental results compared with state‐of‐the‐art methods on real‐world datasets demonstrate the effectiveness of SemiTongue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tt发布了新的文献求助10
刚刚
英俊的铭应助淡然的代灵采纳,获得10
刚刚
1秒前
kk关闭了kk文献求助
4秒前
123完成签到,获得积分10
4秒前
5秒前
木木发布了新的文献求助10
6秒前
6秒前
Scalpel发布了新的文献求助10
9秒前
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
Ananke发布了新的文献求助30
12秒前
12秒前
12秒前
12秒前
田様应助科研通管家采纳,获得10
12秒前
12秒前
Teddy完成签到,获得积分10
12秒前
15秒前
小管发布了新的文献求助10
17秒前
17秒前
小王完成签到,获得积分10
19秒前
19秒前
木木完成签到,获得积分10
19秒前
FashionBoy应助凶狠的山槐采纳,获得10
20秒前
李爱国应助SP-123456采纳,获得10
20秒前
cherry完成签到 ,获得积分10
21秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463248
求助须知:如何正确求助?哪些是违规求助? 3056670
关于积分的说明 9053304
捐赠科研通 2746544
什么是DOI,文献DOI怎么找? 1507004
科研通“疑难数据库(出版商)”最低求助积分说明 696248
邀请新用户注册赠送积分活动 695849