Long lead-time daily and monthly streamflow forecasting using machine learning methods

水流 提前期 计算机科学 人工神经网络 洪水预报 预测期 时间序列 滞后 预测技巧 人工智能 机器学习 环境科学 气象学 流域 生产(经济) 地理 业务 宏观经济学 经济 营销 净现值 地图学 计算机网络
作者
Meiling Cheng,F. Fang,Tsuyoshi Kinouchi,I. M. Navon,Christopher C. Pain
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:590: 125376-125376 被引量:192
标识
DOI:10.1016/j.jhydrol.2020.125376
摘要

Long lead-time streamflow forecasting is of great significance for water resources planning and management in both the short and long terms. Despite of some studies using machine learning methods in streamflow forecasting, only few studies have been conducted to explore long lead-time forecasting capabilities of these methods, and gain an insight into systematic comparison of model forecasting performance in both the short and long terms. In this work, an artificial neural network (ANN) and a long short term memory (LSTM), a powerful tool for learning long-term temporal dependencies and capturing nonlinear relationship, have been adopted to forecast streamflow at daily and monthly scales for a long lead-time period. For long lead-time streamflow forecasting, a recursive forecasting procedure, which takes the last one-step-ahead forecast as a new input for the next-step-ahead forecast, is used in the ANN and LSTM forecasting systems. Two models are trained and validated for streamflow forecasting using the rainfall and runoff datasets collected from the Nan River Basin and Ping River Basin, Thailand, covering the period 1974 to 2014. To further explore the impact of parameter settings on model performance, two parameters, i.e. the length of time lag and the number of maximum epochs, are examined in the ANN and LSTM models. The main findings are highlighted here. First, with an optimal setting up of model parameters, both the ANN and LSTM model can provide accurate daily forecasting (up to 20 days ahead). Second, in comparison to the ANN model, the LSTM model exhibits better model performance in long lead-time daily forecasting, but less satisfactory in multi-monthly forecasting due to lack of large monthly training dataset. Third, the selection of the length of the time lag and number of maximum epochs used in both ANN and LSTM modelling are the key for long lead-time streamflow forecasting at daily and monthly scales. These findings suggest that the LSTM could be advance in daily streamflow forecasting and thus would be helpful to assist in strategy decisions in water resource management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助小章采纳,获得10
刚刚
刚刚
1秒前
爆米花应助马儿咯咯哒采纳,获得10
2秒前
尖叫尖叫发布了新的文献求助20
2秒前
柴郡喵完成签到,获得积分10
3秒前
3秒前
跳跃毒娘发布了新的文献求助10
3秒前
菜小芽完成签到 ,获得积分10
3秒前
华雍完成签到,获得积分10
4秒前
lincool完成签到,获得积分10
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
ZR14124发布了新的文献求助10
8秒前
MAKEYF完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助30
8秒前
上官若男应助Yuanyuan采纳,获得10
10秒前
dnn_发布了新的文献求助10
10秒前
自然若完成签到,获得积分10
10秒前
12秒前
wkktx发布了新的文献求助10
12秒前
优美紫槐发布了新的文献求助10
13秒前
周新运完成签到,获得积分10
13秒前
14秒前
阿奶完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
15秒前
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729568
求助须知:如何正确求助?哪些是违规求助? 5319394
关于积分的说明 15317016
捐赠科研通 4876593
什么是DOI,文献DOI怎么找? 2619440
邀请新用户注册赠送积分活动 1568984
关于科研通互助平台的介绍 1525535