亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Long lead-time daily and monthly streamflow forecasting using machine learning methods

水流 提前期 计算机科学 人工神经网络 洪水预报 预测期 时间序列 滞后 预测技巧 人工智能 机器学习 环境科学 气象学 流域 生产(经济) 地理 业务 宏观经济学 经济 营销 净现值 地图学 计算机网络
作者
Meiling Cheng,F. Fang,Tsuyoshi Kinouchi,I. M. Navon,Christopher C. Pain
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:590: 125376-125376 被引量:192
标识
DOI:10.1016/j.jhydrol.2020.125376
摘要

Long lead-time streamflow forecasting is of great significance for water resources planning and management in both the short and long terms. Despite of some studies using machine learning methods in streamflow forecasting, only few studies have been conducted to explore long lead-time forecasting capabilities of these methods, and gain an insight into systematic comparison of model forecasting performance in both the short and long terms. In this work, an artificial neural network (ANN) and a long short term memory (LSTM), a powerful tool for learning long-term temporal dependencies and capturing nonlinear relationship, have been adopted to forecast streamflow at daily and monthly scales for a long lead-time period. For long lead-time streamflow forecasting, a recursive forecasting procedure, which takes the last one-step-ahead forecast as a new input for the next-step-ahead forecast, is used in the ANN and LSTM forecasting systems. Two models are trained and validated for streamflow forecasting using the rainfall and runoff datasets collected from the Nan River Basin and Ping River Basin, Thailand, covering the period 1974 to 2014. To further explore the impact of parameter settings on model performance, two parameters, i.e. the length of time lag and the number of maximum epochs, are examined in the ANN and LSTM models. The main findings are highlighted here. First, with an optimal setting up of model parameters, both the ANN and LSTM model can provide accurate daily forecasting (up to 20 days ahead). Second, in comparison to the ANN model, the LSTM model exhibits better model performance in long lead-time daily forecasting, but less satisfactory in multi-monthly forecasting due to lack of large monthly training dataset. Third, the selection of the length of the time lag and number of maximum epochs used in both ANN and LSTM modelling are the key for long lead-time streamflow forecasting at daily and monthly scales. These findings suggest that the LSTM could be advance in daily streamflow forecasting and thus would be helpful to assist in strategy decisions in water resource management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
福斯卡完成签到 ,获得积分10
3秒前
幽默的志泽完成签到,获得积分10
8秒前
cc发布了新的文献求助10
24秒前
wang完成签到,获得积分10
28秒前
28秒前
30秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
小夏饭桶应助科研通管家采纳,获得20
40秒前
cc关注了科研通微信公众号
42秒前
虚幻紫伊完成签到 ,获得积分10
50秒前
陈俐俐完成签到,获得积分10
51秒前
立青完成签到 ,获得积分10
51秒前
微风打了烊完成签到 ,获得积分10
52秒前
56秒前
尼大王完成签到,获得积分10
1分钟前
1分钟前
我补药写论文啊呜呜呜完成签到,获得积分10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
oleskarabach完成签到,获得积分20
1分钟前
ah完成签到,获得积分10
1分钟前
1分钟前
李爱国应助勤恳迎天采纳,获得10
1分钟前
Carl发布了新的文献求助10
1分钟前
1分钟前
李昕123完成签到 ,获得积分10
1分钟前
zsh发布了新的文献求助10
1分钟前
Milktea123完成签到,获得积分10
1分钟前
浮游应助oleskarabach采纳,获得10
1分钟前
天天快乐应助zsh采纳,获得10
1分钟前
草木完成签到 ,获得积分10
1分钟前
vicky完成签到 ,获得积分10
1分钟前
王者归来完成签到,获得积分10
1分钟前
钉钉完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Mi发布了新的文献求助10
1分钟前
勤恳迎天发布了新的文献求助10
1分钟前
凯旋预言完成签到 ,获得积分10
1分钟前
彭于晏应助Carl采纳,获得10
2分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5334757
求助须知:如何正确求助?哪些是违规求助? 4472784
关于积分的说明 13920782
捐赠科研通 4366762
什么是DOI,文献DOI怎么找? 2399217
邀请新用户注册赠送积分活动 1392372
关于科研通互助平台的介绍 1363284