Long lead-time daily and monthly streamflow forecasting using machine learning methods

水流 提前期 计算机科学 人工神经网络 洪水预报 预测期 时间序列 滞后 预测技巧 人工智能 机器学习 环境科学 气象学 流域 生产(经济) 地理 业务 宏观经济学 经济 营销 净现值 地图学 计算机网络
作者
Meiling Cheng,F. Fang,Tsuyoshi Kinouchi,I. M. Navon,Christopher C. Pain
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:590: 125376-125376 被引量:192
标识
DOI:10.1016/j.jhydrol.2020.125376
摘要

Long lead-time streamflow forecasting is of great significance for water resources planning and management in both the short and long terms. Despite of some studies using machine learning methods in streamflow forecasting, only few studies have been conducted to explore long lead-time forecasting capabilities of these methods, and gain an insight into systematic comparison of model forecasting performance in both the short and long terms. In this work, an artificial neural network (ANN) and a long short term memory (LSTM), a powerful tool for learning long-term temporal dependencies and capturing nonlinear relationship, have been adopted to forecast streamflow at daily and monthly scales for a long lead-time period. For long lead-time streamflow forecasting, a recursive forecasting procedure, which takes the last one-step-ahead forecast as a new input for the next-step-ahead forecast, is used in the ANN and LSTM forecasting systems. Two models are trained and validated for streamflow forecasting using the rainfall and runoff datasets collected from the Nan River Basin and Ping River Basin, Thailand, covering the period 1974 to 2014. To further explore the impact of parameter settings on model performance, two parameters, i.e. the length of time lag and the number of maximum epochs, are examined in the ANN and LSTM models. The main findings are highlighted here. First, with an optimal setting up of model parameters, both the ANN and LSTM model can provide accurate daily forecasting (up to 20 days ahead). Second, in comparison to the ANN model, the LSTM model exhibits better model performance in long lead-time daily forecasting, but less satisfactory in multi-monthly forecasting due to lack of large monthly training dataset. Third, the selection of the length of the time lag and number of maximum epochs used in both ANN and LSTM modelling are the key for long lead-time streamflow forecasting at daily and monthly scales. These findings suggest that the LSTM could be advance in daily streamflow forecasting and thus would be helpful to assist in strategy decisions in water resource management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉唐精彩完成签到,获得积分10
刚刚
刚刚
1秒前
田茂青完成签到,获得积分10
1秒前
damian发布了新的文献求助30
1秒前
1秒前
聪明芒果完成签到,获得积分10
1秒前
Vvvvvvv应助虫二先生采纳,获得10
1秒前
西大研究生完成签到 ,获得积分10
1秒前
2秒前
2秒前
呆呆完成签到,获得积分10
2秒前
左一酱完成签到 ,获得积分10
3秒前
平淡南霜发布了新的文献求助10
3秒前
Sweet关注了科研通微信公众号
3秒前
3秒前
赘婿应助wangfu采纳,获得10
4秒前
4秒前
4秒前
pipge完成签到,获得积分20
4秒前
5秒前
澳澳发布了新的文献求助10
5秒前
6秒前
清脆的映天完成签到,获得积分10
6秒前
yl驳回了sweetbearm应助
6秒前
隐形曼青应助2鱼采纳,获得10
6秒前
通~发布了新的文献求助10
6秒前
香蕉觅云应助junzilan采纳,获得10
7秒前
张老涵发布了新的文献求助10
7秒前
灌饼发布了新的文献求助30
7秒前
罗实发布了新的文献求助10
7秒前
张张发布了新的文献求助10
8秒前
木香发布了新的文献求助10
8秒前
朴实以松发布了新的文献求助10
8秒前
在水一方应助神帅酷哥采纳,获得10
8秒前
9秒前
9秒前
pipge发布了新的文献求助30
9秒前
9秒前
万能图书馆应助卡卡采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794