亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Long lead-time daily and monthly streamflow forecasting using machine learning methods

水流 提前期 计算机科学 人工神经网络 洪水预报 预测期 时间序列 滞后 预测技巧 人工智能 机器学习 环境科学 气象学 流域 生产(经济) 地理 业务 宏观经济学 经济 营销 净现值 地图学 计算机网络
作者
Meiling Cheng,F. Fang,Tsuyoshi Kinouchi,I. M. Navon,Christopher C. Pain
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:590: 125376-125376 被引量:192
标识
DOI:10.1016/j.jhydrol.2020.125376
摘要

Long lead-time streamflow forecasting is of great significance for water resources planning and management in both the short and long terms. Despite of some studies using machine learning methods in streamflow forecasting, only few studies have been conducted to explore long lead-time forecasting capabilities of these methods, and gain an insight into systematic comparison of model forecasting performance in both the short and long terms. In this work, an artificial neural network (ANN) and a long short term memory (LSTM), a powerful tool for learning long-term temporal dependencies and capturing nonlinear relationship, have been adopted to forecast streamflow at daily and monthly scales for a long lead-time period. For long lead-time streamflow forecasting, a recursive forecasting procedure, which takes the last one-step-ahead forecast as a new input for the next-step-ahead forecast, is used in the ANN and LSTM forecasting systems. Two models are trained and validated for streamflow forecasting using the rainfall and runoff datasets collected from the Nan River Basin and Ping River Basin, Thailand, covering the period 1974 to 2014. To further explore the impact of parameter settings on model performance, two parameters, i.e. the length of time lag and the number of maximum epochs, are examined in the ANN and LSTM models. The main findings are highlighted here. First, with an optimal setting up of model parameters, both the ANN and LSTM model can provide accurate daily forecasting (up to 20 days ahead). Second, in comparison to the ANN model, the LSTM model exhibits better model performance in long lead-time daily forecasting, but less satisfactory in multi-monthly forecasting due to lack of large monthly training dataset. Third, the selection of the length of the time lag and number of maximum epochs used in both ANN and LSTM modelling are the key for long lead-time streamflow forecasting at daily and monthly scales. These findings suggest that the LSTM could be advance in daily streamflow forecasting and thus would be helpful to assist in strategy decisions in water resource management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
15秒前
麒麟发布了新的文献求助10
18秒前
evidence完成签到,获得积分10
28秒前
33秒前
Esperanza完成签到,获得积分10
37秒前
39秒前
麒麟完成签到,获得积分10
41秒前
淡定的彩虹完成签到,获得积分10
43秒前
研究僧法号方丈完成签到,获得积分0
47秒前
风清扬应助狂野的蜡烛采纳,获得30
51秒前
melvin发布了新的文献求助10
52秒前
52秒前
檸123456完成签到,获得积分10
53秒前
57秒前
59秒前
狂野的蜡烛完成签到,获得积分10
1分钟前
阿萨大大完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
符聪发布了新的文献求助10
1分钟前
Soey发布了新的文献求助10
1分钟前
1分钟前
rrrrrrry发布了新的文献求助10
1分钟前
1分钟前
Soey发布了新的文献求助10
2分钟前
jimmy_bytheway完成签到,获得积分0
2分钟前
2分钟前
mmyhn发布了新的文献求助10
2分钟前
2分钟前
ttttt发布了新的文献求助10
2分钟前
来瓶无糖快乐水吧完成签到,获得积分20
2分钟前
量子星尘发布了新的文献求助10
3分钟前
星辰大海应助cookie1209采纳,获得10
3分钟前
3分钟前
neimy完成签到,获得积分20
3分钟前
Rondab应助neimy采纳,获得40
3分钟前
tcheng发布了新的文献求助10
3分钟前
英俊的铭应助一个人闲逛采纳,获得10
3分钟前
明亮剑完成签到 ,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953432
求助须知:如何正确求助?哪些是违规求助? 3498924
关于积分的说明 11093338
捐赠科研通 3229512
什么是DOI,文献DOI怎么找? 1785471
邀请新用户注册赠送积分活动 869430
科研通“疑难数据库(出版商)”最低求助积分说明 801442