Long lead-time daily and monthly streamflow forecasting using machine learning methods

水流 提前期 计算机科学 人工神经网络 洪水预报 预测期 时间序列 滞后 预测技巧 人工智能 机器学习 环境科学 气象学 流域 生产(经济) 地理 业务 宏观经济学 经济 营销 净现值 地图学 计算机网络
作者
Meiling Cheng,F. Fang,Tsuyoshi Kinouchi,I. M. Navon,Christopher C. Pain
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:590: 125376-125376 被引量:192
标识
DOI:10.1016/j.jhydrol.2020.125376
摘要

Long lead-time streamflow forecasting is of great significance for water resources planning and management in both the short and long terms. Despite of some studies using machine learning methods in streamflow forecasting, only few studies have been conducted to explore long lead-time forecasting capabilities of these methods, and gain an insight into systematic comparison of model forecasting performance in both the short and long terms. In this work, an artificial neural network (ANN) and a long short term memory (LSTM), a powerful tool for learning long-term temporal dependencies and capturing nonlinear relationship, have been adopted to forecast streamflow at daily and monthly scales for a long lead-time period. For long lead-time streamflow forecasting, a recursive forecasting procedure, which takes the last one-step-ahead forecast as a new input for the next-step-ahead forecast, is used in the ANN and LSTM forecasting systems. Two models are trained and validated for streamflow forecasting using the rainfall and runoff datasets collected from the Nan River Basin and Ping River Basin, Thailand, covering the period 1974 to 2014. To further explore the impact of parameter settings on model performance, two parameters, i.e. the length of time lag and the number of maximum epochs, are examined in the ANN and LSTM models. The main findings are highlighted here. First, with an optimal setting up of model parameters, both the ANN and LSTM model can provide accurate daily forecasting (up to 20 days ahead). Second, in comparison to the ANN model, the LSTM model exhibits better model performance in long lead-time daily forecasting, but less satisfactory in multi-monthly forecasting due to lack of large monthly training dataset. Third, the selection of the length of the time lag and number of maximum epochs used in both ANN and LSTM modelling are the key for long lead-time streamflow forecasting at daily and monthly scales. These findings suggest that the LSTM could be advance in daily streamflow forecasting and thus would be helpful to assist in strategy decisions in water resource management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助眯眯眼的山柳采纳,获得10
刚刚
嘟嘟关注了科研通微信公众号
刚刚
1秒前
NexusExplorer应助芝士丁丁采纳,获得10
1秒前
1秒前
i学习完成签到,获得积分10
1秒前
久天完成签到 ,获得积分10
1秒前
小高发布了新的文献求助10
2秒前
烦烦完成签到,获得积分10
2秒前
3秒前
heyvan完成签到 ,获得积分10
4秒前
有点意思完成签到,获得积分10
4秒前
小蘑菇应助大方的半莲采纳,获得10
5秒前
顺利念云发布了新的文献求助30
5秒前
荼蘼完成签到,获得积分10
5秒前
兔农糖发布了新的文献求助10
6秒前
FashionBoy应助淡定小蜜蜂采纳,获得10
6秒前
7秒前
菜菜完成签到,获得积分10
8秒前
輝23完成签到,获得积分20
9秒前
欢蛋完成签到 ,获得积分10
9秒前
jgpiao完成签到,获得积分10
9秒前
10秒前
疯狂的冒菜完成签到,获得积分10
10秒前
复杂的板凳完成签到,获得积分10
10秒前
10秒前
完蛋完成签到,获得积分20
11秒前
12秒前
丘比特应助兔农糖采纳,获得10
12秒前
CC发布了新的文献求助10
14秒前
无奈淇完成签到,获得积分10
14秒前
14秒前
14秒前
完蛋发布了新的文献求助10
15秒前
15秒前
16秒前
17秒前
17秒前
知12完成签到,获得积分10
18秒前
高万完成签到,获得积分10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135235
求助须知:如何正确求助?哪些是违规求助? 2786181
关于积分的说明 7776022
捐赠科研通 2442078
什么是DOI,文献DOI怎么找? 1298417
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847