最大值和最小值
全局优化
人工神经网络
铜
能量最小化
曲面(拓扑)
遗传算法
系列(地层学)
势能面
吸附
材料科学
势能
算法
生物系统
金属
氧化铜
计算机科学
化学物理
化学
计算化学
物理
数学
分子
几何学
人工智能
物理化学
原子物理学
机器学习
生物
数学分析
有机化学
古生物学
冶金
作者
Martín Leandro Paleico,Jörg Behler
摘要
The determination of the most stable structures of metal clusters supported at solid surfaces by computer simulations represents a formidable challenge due to the complexity of the potential-energy surface. Here, we combine a high-dimensional neural network potential, which allows us to predict the energies and forces of a large number of structures with first-principles accuracy, with a global optimization scheme employing genetic algorithms. This very efficient setup is used to identify the global minima and low-energy local minima for a series of copper clusters containing between four and ten atoms adsorbed at the ZnO(101¯0) surface. A series of structures with common structural features resembling the Cu(111) and Cu(110) surfaces at the metal-oxide interface has been identified, and the geometries of the emerging clusters are characterized in detail. We demonstrate that the frequently employed approximation of a frozen substrate surface in global optimization can result in missing the most relevant structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI