Performance of a computer-aided diagnosis system in diagnosing early gastric cancer using magnifying endoscopy videos with narrow-band imaging (with videos)

医学 计算机辅助设计 置信区间 内窥镜检查 预测值 放射科 曲线下面积 癌症 计算机辅助诊断 曲线下面积 窄带成像 内科学 诊断准确性 药代动力学 工程类 工程制图
作者
Yusuke Horiuchi,Toshiaki Hirasawa,Naoki Ishizuka,Yoshitaka Tokai,Ken Namikawa,Shoichi Yoshimizu,Akiyoshi Ishiyama,Toshiyuki Yoshio,Takaaki Tsuchida,Junko Fujisaki,Takeshi Tada
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:92 (4): 856-865.e1 被引量:60
标识
DOI:10.1016/j.gie.2020.04.079
摘要

Background and Aims

The performance of magnifying endoscopy with narrow-band imaging (ME-NBI) using a computer-aided diagnosis (CAD) system in diagnosing early gastric cancer (EGC) is unclear. Here, we aimed to clarify the differences in the diagnostic performance between expert endoscopists and the CAD system using ME-NBI.

Methods

The CAD system was pretrained using 1492 cancerous and 1078 noncancerous images obtained using ME-NBI. One hundred seventy-four videos (87 cancerous and 87 noncancerous videos) were used to evaluate the diagnostic performance of the CAD system using the area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). For each item, comparisons were made between the CAD system and 11 experts who were skilled in diagnosing EGC using ME-NBI with clinical experience of more than 1 year at our hospital.

Results

The CAD system demonstrated an AUC of 0.8684. The accuracy, sensitivity, specificity, PPV, and NPV were 85.1% (95% confidence interval [95% CI], 79.0-89.6), 87.4% (95% CI, 78.8-92.8), 82.8% (95% CI, 73.5-89.3), 83.5% (95% CI, 74.6-89.7), and 86.7% (95% CI, 77.8-92.4), respectively. The CAD system was significantly more accurate than 2 experts, significantly less accurate than 1 expert, and not significantly different from the remaining 8 experts.

Conclusions

The overall performance of the CAD system using ME-NBI videos in diagnosing EGC was considered good and was equivalent to or better than that of several experts. The CAD system may prove useful in the diagnosis of EGC in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nihil完成签到,获得积分10
刚刚
活力的泥猴桃完成签到 ,获得积分10
1秒前
1秒前
2秒前
obito完成签到,获得积分10
2秒前
娜行发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
Ck完成签到,获得积分10
4秒前
烦烦完成签到 ,获得积分10
5秒前
百宝发布了新的文献求助10
6秒前
jiangnan发布了新的文献求助10
6秒前
Sev完成签到,获得积分10
6秒前
6秒前
可耐的乘风完成签到,获得积分10
6秒前
FIN应助obito采纳,获得30
7秒前
啾啾发布了新的文献求助10
7秒前
爱学习的向日葵完成签到,获得积分10
8秒前
8秒前
华仔应助泛泛之交采纳,获得10
9秒前
雪123发布了新的文献求助10
9秒前
9秒前
10秒前
charon发布了新的文献求助10
10秒前
凶狠的食铁兽完成签到,获得积分10
10秒前
星辰大海应助花花啊采纳,获得10
10秒前
华仔应助liuyingke采纳,获得10
10秒前
HEIKU应助还不如瞎写采纳,获得10
11秒前
liuliumei发布了新的文献求助30
12秒前
zhouzhou完成签到,获得积分10
12秒前
sure发布了新的文献求助10
12秒前
上官若男应助Hu111采纳,获得10
13秒前
务实的紫伊完成签到,获得积分10
13秒前
春风得意完成签到,获得积分10
13秒前
爱你呃不可能完成签到,获得积分10
13秒前
WSY完成签到,获得积分20
13秒前
666星爷留下了新的社区评论
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672