亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accelerated discovery of CO2 electrocatalysts using active machine learning

法拉第效率 可再生能源 材料科学 电催化剂 乙二醇 化石燃料 电化学 电极 乙烯 纳米技术 化学工程 化学 催化作用 电气工程 有机化学 物理化学 工程类
作者
Miao Zhong,Kevin Tran,Yimeng Min,Chuanhao Wang,Ziyun Wang,Cao‐Thang Dinh,Phil De Luna,Zongqian Yu,Armin Sedighian Rasouli,Peter Brodersen,Song Sun,Oleksandr Voznyy,Chih‐Shan Tan,Mikhail Askerka,Fanglin Che,Min Liu,Ali Seifitokaldani,Yuanjie Pang,Shen-Chuan Lo,Alexander H. Ip
出处
期刊:Nature [Nature Portfolio]
卷期号:581 (7807): 178-183 被引量:1174
标识
DOI:10.1038/s41586-020-2242-8
摘要

The rapid increase in global energy demand and the need to replace carbon dioxide (CO2)-emitting fossil fuels with renewable sources have driven interest in chemical storage of intermittent solar and wind energy1,2. Particularly attractive is the electrochemical reduction of CO2 to chemical feedstocks, which uses both CO2 and renewable energy3–8. Copper has been the predominant electrocatalyst for this reaction when aiming for more valuable multi-carbon products9–16, and process improvements have been particularly notable when targeting ethylene. However, the energy efficiency and productivity (current density) achieved so far still fall below the values required to produce ethylene at cost-competitive prices. Here we describe Cu-Al electrocatalysts, identified using density functional theory calculations in combination with active machine learning, that efficiently reduce CO2 to ethylene with the highest Faradaic efficiency reported so far. This Faradaic efficiency of over 80 per cent (compared to about 66 per cent for pure Cu) is achieved at a current density of 400 milliamperes per square centimetre (at 1.5 volts versus a reversible hydrogen electrode) and a cathodic-side (half-cell) ethylene power conversion efficiency of 55 ± 2 per cent at 150 milliamperes per square centimetre. We perform computational studies that suggest that the Cu-Al alloys provide multiple sites and surface orientations with near-optimal CO binding for both efficient and selective CO2 reduction17. Furthermore, in situ X-ray absorption measurements reveal that Cu and Al enable a favourable Cu coordination environment that enhances C–C dimerization. These findings illustrate the value of computation and machine learning in guiding the experimental exploration of multi-metallic systems that go beyond the limitations of conventional single-metal electrocatalysts. Machine learning predicts Cu-Al electrocatalysts provide better efficiency and productivity than copper when using intermittent renewable electricity to convert carbon dioxide to useful chemicals and fuels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
森sen完成签到 ,获得积分10
8秒前
夏宇航关注了科研通微信公众号
9秒前
锦慜完成签到 ,获得积分10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
大模型应助科研通管家采纳,获得30
13秒前
13秒前
Milton_z完成签到 ,获得积分0
16秒前
劳健龙完成签到 ,获得积分10
17秒前
是啊今夕空闲完成签到,获得积分10
23秒前
夏宇航发布了新的文献求助10
25秒前
无灾无难到公卿完成签到,获得积分10
28秒前
马路完成签到 ,获得积分10
32秒前
34秒前
shuiyu完成签到,获得积分10
35秒前
Dritsw应助Zirong采纳,获得10
38秒前
wykion完成签到,获得积分0
40秒前
46秒前
49秒前
51秒前
DoctorG发布了新的文献求助10
56秒前
激情的白枫完成签到 ,获得积分10
58秒前
酷波er应助DoctorG采纳,获得10
1分钟前
坦率完成签到,获得积分10
1分钟前
1分钟前
充电宝应助7_采纳,获得10
1分钟前
1分钟前
1分钟前
lengkuboy发布了新的文献求助10
1分钟前
111111完成签到,获得积分10
1分钟前
DrW1111发布了新的文献求助10
1分钟前
IfItheonlyone完成签到 ,获得积分10
1分钟前
lengkuboy完成签到,获得积分10
1分钟前
eye应助搞怪腊肠采纳,获得10
1分钟前
李爱国应助DrW1111采纳,获得10
2分钟前
Meteor636完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965570
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155342
捐赠科研通 3245324
什么是DOI,文献DOI怎么找? 1792823
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176