Reduced-Order Observer-Based Dynamic Event-Triggered Adaptive NN Control for Stochastic Nonlinear Systems Subject to Unknown Input Saturation

控制理论(社会学) 非线性系统 观察员(物理) 计算机科学 国家观察员 控制器(灌溉) 人工神经网络 执行机构 控制(管理) 人工智能 农学 量子力学 生物 物理
作者
Lijie Wang,C. L. Philip Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (4): 1678-1690 被引量:145
标识
DOI:10.1109/tnnls.2020.2986281
摘要

In this article, a dynamic event-triggered control scheme for a class of stochastic nonlinear systems with unknown input saturation and partially unmeasured states is presented. First, a dynamic event-triggered mechanism (DEM) is designed to reduce some unnecessary transmissions from controller to actuator so as to achieve better resource efficiency. Unlike most existing event-triggered mechanisms, in which the threshold parameters are always fixed, the threshold parameter in the developed event-triggered condition is dynamically adjusted according to a dynamic rule. Second, an improved neural network that considers the reconstructed error is introduced to approximate the unknown nonlinear terms existed in the considered systems. Third, an auxiliary system with the same order as the considered system is constructed to deal with the influence of asymmetric input saturation, which is distinct from most existing methods for nonlinear systems with input saturation. Assuming that the partial state is unavailable in the system, a reduced-order observer is presented to estimate them. Furthermore, it is theoretically proven that the obtained control scheme can achieve the desired objects. Finally, a one-link manipulator system and a three-degree-of-freedom ship maneuvering system are presented to illustrate the effectiveness of the proposed control method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
传奇3应助妙aaa采纳,获得10
2秒前
3秒前
xucc发布了新的文献求助20
3秒前
芋圆完成签到,获得积分10
3秒前
maox1aoxin应助animages采纳,获得50
4秒前
4秒前
Cyber_relic发布了新的文献求助10
5秒前
科目三应助biang采纳,获得10
5秒前
6秒前
Arthur发布了新的文献求助30
6秒前
小金鱼发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
LincLin发布了新的文献求助10
8秒前
YT完成签到,获得积分10
9秒前
9秒前
迟大猫应助天真的高山采纳,获得10
10秒前
10秒前
简单以宁2发布了新的文献求助10
11秒前
11秒前
12秒前
Cyber_relic完成签到,获得积分10
12秒前
科研通AI2S应助二二采纳,获得10
12秒前
寒冷的寻菱完成签到,获得积分10
13秒前
CodeCraft应助神勇的曼文采纳,获得10
14秒前
NexusExplorer应助小冬瓜采纳,获得10
14秒前
琉璃发布了新的文献求助10
15秒前
15秒前
yby发布了新的文献求助10
15秒前
16秒前
星辰大海应助Gin采纳,获得10
16秒前
Ava应助zyt采纳,获得10
16秒前
我是老大应助超级灰狼采纳,获得10
16秒前
小耶完成签到 ,获得积分10
17秒前
科研通AI5应助深情的幼南采纳,获得30
17秒前
脑洞疼应助静不净采纳,获得10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771