State of AI-Based Monitoring in Smart Manufacturing and Introduction to Focused Section

制造工程 过程(计算) 计算机科学 生产(经济) 工程类 系统工程 操作系统 宏观经济学 经济
作者
Han Ding,Robert X. Gao,Alf Isaksson,Robert G. Landers,Thomas Parisini,Ye Yuan
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:25 (5): 2143-2154 被引量:80
标识
DOI:10.1109/tmech.2020.3022983
摘要

Over the past few decades, intelligentization, supported by artificial intelligence (AI) technologies, has become an important trend for industrial manufacturing, accelerating the development of smart manufacturing. In modern industries, standard AI has been endowed with additional attributes, yielding the so-called industrial artificial intelligence (IAI) that has become the technical core of smart manufacturing. AI-powered manufacturing brings remarkable improvements in many aspects of closed-loop production chains from manufacturing processes to end product logistics. In particular, IAI incorporating domain knowledge has benefited the area of production monitoring considerably. Advanced AI methods such as deep neural networks, adversarial training, and transfer learning have been widely used to support both diagnostics and predictive maintenance of the entire production process. It is generally believed that IAI is the critical technologies needed to drive the future evolution of industrial manufacturing. This article offers a comprehensive overview of AI-powered manufacturing and its applications in monitoring. More specifically, it summarizes the key technologies of IAI and discusses their typical application scenarios with respect to three major aspects of production monitoring: fault diagnosis, remaining useful life prediction, and quality inspection. In addition, the existing problems and future research directions of IAI are also discussed. This article further introduces the papers in this focused section on AI-based monitoring in smart manufacturing by weaving them into the overview, highlighting how they contribute to and extend the body of literature in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
plusweng完成签到 ,获得积分10
刚刚
TYU2021发布了新的文献求助10
1秒前
无名老大应助Wellnemo采纳,获得50
1秒前
2秒前
Rabbit完成签到 ,获得积分10
3秒前
水空明完成签到 ,获得积分10
3秒前
6秒前
zyy123888完成签到,获得积分10
7秒前
wqx发布了新的文献求助10
7秒前
无名老大应助简单的沂采纳,获得20
10秒前
我是老大应助gyx采纳,获得10
12秒前
程程发布了新的文献求助10
12秒前
科研民工李完成签到,获得积分10
15秒前
MingandMin完成签到,获得积分10
16秒前
田様应助缥缈念云采纳,获得10
16秒前
23秒前
半夏完成签到 ,获得积分10
27秒前
27秒前
gyx发布了新的文献求助10
30秒前
A,w携念e行ོ完成签到,获得积分10
32秒前
32秒前
33秒前
33秒前
33秒前
科研通AI2S应助欧小鑫采纳,获得10
34秒前
劲秉应助gggghhhh采纳,获得30
34秒前
lin完成签到,获得积分10
35秒前
凌康应助光亮的世界采纳,获得10
37秒前
xuxuxu完成签到 ,获得积分10
41秒前
43秒前
淡然的冷松完成签到 ,获得积分10
45秒前
CM发布了新的文献求助10
46秒前
47秒前
50秒前
scq完成签到 ,获得积分10
51秒前
51秒前
缥缈念云发布了新的文献求助10
53秒前
53秒前
BING完成签到 ,获得积分10
53秒前
潘润朗完成签到,获得积分10
54秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352352
求助须知:如何正确求助?哪些是违规求助? 2977561
关于积分的说明 8680125
捐赠科研通 2658516
什么是DOI,文献DOI怎么找? 1455859
科研通“疑难数据库(出版商)”最低求助积分说明 674121
邀请新用户注册赠送积分活动 664666