Deformable registration and region-of-interest image reconstruction in sparse repeat CT scanning

感兴趣区域 人工智能 计算机视觉 图像质量 计算机科学 图像配准 迭代重建 核医学 图像(数学) 医学
作者
Zeev Adelman,Leo Joskowicz
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:28 (6): 1069-1089 被引量:5
标识
DOI:10.3233/xst-200706
摘要

BACKGROUND: Repeat CT scanning is ubiquitous in many clinical situations, e.g. to follow disease progression, to evaluate treatment efficacy, and to monitor interventional CT procedures. However, it incurs in cumulative radiation to the patient which can be significantly reduced by using a region of interest (ROI) and the existing baseline scan. OBJECTIVE: To obtain a high-quality reconstruction of a ROI with a significantly reduced X-ray radiation dosage that accounts for deformations. METHODS: We present a new method for deformable registration and image reconstruction inside an ROI in repeat CT scans with a highly reduced X-ray radiation dose based on sparse scanning. Our method uses the existing baseline scan data, a user-defined ROI, and a new sparse repeat scan to compute a high-quality repeat scan ROI image with a significantly reduced radiation dose. Our method first performs rigid registration between the densely scanned baseline and the sparsely scanned repeat CT scans followed by deformable registration with a low-order parametric model, both in 3D Radon space and without reconstructing the repeat scan image. It then reconstructs the repeat scan ROI without computing the entire repeat scan image. RESULTS: Our experimental results on clinical lung and liver CT scans yield a mean × 14 computation speedup and a × 7.6-12.5 radiation dose reduction, with a minor image quality loss of 0.0157 in the NRMSE metric. CONCLUSION: Our method is considerably faster than existing methods, thereby enabling intraoperative online repeat scanning that it is accurate and accounts for position, deformation, and structure changes at a fraction of the radiation dose required by existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助黯然采纳,获得10
1秒前
wang完成签到,获得积分10
2秒前
2秒前
潇洒十三关注了科研通微信公众号
4秒前
可爱的函函应助huanhuan采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
田様应助seven采纳,获得10
6秒前
哼哼发布了新的文献求助10
6秒前
7秒前
江上清风游完成签到,获得积分10
8秒前
兜兜揣满糖完成签到 ,获得积分10
8秒前
8秒前
橘子完成签到,获得积分10
8秒前
意忆发布了新的文献求助10
9秒前
zxy发布了新的文献求助10
10秒前
10秒前
yy发布了新的文献求助10
10秒前
幸运星发布了新的文献求助30
13秒前
13秒前
pears给pears的求助进行了留言
13秒前
淡定采萱发布了新的文献求助10
14秒前
卤蛋蛋_li发布了新的文献求助10
14秒前
自觉瑾瑜发布了新的文献求助10
14秒前
16秒前
16秒前
16秒前
饼饼发布了新的文献求助10
17秒前
椰水冰凉发布了新的文献求助10
17秒前
板栗爱吃柚子关注了科研通微信公众号
18秒前
19秒前
Wendy发布了新的文献求助10
19秒前
20秒前
mm完成签到 ,获得积分10
20秒前
huanhuan发布了新的文献求助10
20秒前
zxy完成签到,获得积分20
20秒前
KinFunny发布了新的文献求助10
21秒前
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458565
求助须知:如何正确求助?哪些是违规求助? 3053409
关于积分的说明 9036451
捐赠科研通 2742665
什么是DOI,文献DOI怎么找? 1504455
科研通“疑难数据库(出版商)”最低求助积分说明 695312
邀请新用户注册赠送积分活动 694484