材料科学
电解质
电极
电化学
化学工程
有机自由基电池
纳米技术
氧化物
涂层
储能
化学
冶金
功率(物理)
物理化学
工程类
物理
量子力学
作者
Ranjith Thangavel,Megala Moorthy,Bala Krishnan Ganesan,Wontae Lee,Won‐Sub Yoon,Yun‐Sung Lee
出处
期刊:Small
[Wiley]
日期:2020-09-22
卷期号:16 (41)
被引量:31
标识
DOI:10.1002/smll.202003688
摘要
Abstract Sodium‐ion batteries (SIBs) have become increasingly important as next‐generation energy storage systems for application in large‐scale energy storage. It is very crucial to develop an eco‐friendly and green SIB technique with superior performance for sustainable future use. Replacing the conventional inorganic electrode materials with green and safe organic electrodes will be a promising approach. However, the poor electrochemical kinetics, unstable electrode–electrolyte interface, high solubility of the electrodes in the electrolyte, and large amount of conductive carbon present great challenges for organic SIBs. In this study, the issues of organic electrodes are addressed through atomic‐level manipulation of these organic molecules using a series of ultrathin (Å‐level) metal oxide coatings (Al 2 O 3 , ZnO, and TiO 2 ). Uniform and precise coatings on the perylene‐3,4,9,10‐tetracarboxylicacid dianhydride by gas‐phase atomic layer deposition technique shows a stable interphase, enhanced electrochemical kinetics (71C, 10 A g −1 ), and excellent stability (89%–500 cycles) compared to conventional organic electrode (70%–200 cycles). Further studies reveal that the chemical stability of the metal oxide coating layer plays a critical role in influencing the redox behavior, and improving kinetics of organic electrodes. This study opens a new avenue for developing high‐energy organic SIBs with performance equivalent to inorganic counterparts.
科研通智能强力驱动
Strongly Powered by AbleSci AI