作者
Karen Crawford,Juan Felipe Diaz Quiroz,Kristen M. Koenig,Namrata Ahuja,Caroline B. Albertin,Joshua J. C. Rosenthal
摘要
Seminal studies using squid as a model led to breakthroughs in neurobiology. The squid giant axon and synapse, for example, laid the foundation for our current understanding of the action potential [1Hodgkin A.L. Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. 1952; 117: 500-544Crossref PubMed Scopus (13027) Google Scholar], ionic gradients across cells [2De Weer P. Geduldig D. Electrogenic sodium pump in squid giant axon.Science. 1973; 179: 1326-1328Crossref PubMed Scopus (27) Google Scholar], voltage-dependent ion channels [3Armstrong C.M. Bezanilla F. Currents related to movement of the gating particles of the sodium channels.Nature. 1973; 242: 459-461Crossref PubMed Scopus (423) Google Scholar], molecular motors [4Vale R.D. Schnapp B.J. Mitchison T. Steuer E. Reese T.S. Sheetz M.P. Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro.Cell. 1985; 43: 623-632Abstract Full Text PDF PubMed Scopus (274) Google Scholar, 5Brady S.T. Lasek R.J. Allen R.D. Fast axonal transport in extruded axoplasm from squid giant axon.Science. 1982; 218: 1129-1131Crossref PubMed Scopus (210) Google Scholar, 6Vale R.D. Reese T.S. Sheetz M.P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility.Cell. 1985; 42: 39-50Abstract Full Text PDF PubMed Scopus (1324) Google Scholar, 7Vale R.D. Schnapp B.J. Reese T.S. Sheetz M.P. Organelle, bead, and microtubule translocations promoted by soluble factors from the squid giant axon.Cell. 1985; 40: 559-569Abstract Full Text PDF PubMed Scopus (219) Google Scholar], and synaptic transmission [8Bloedel J. Gage P.W. Llinás R. Quastel D.M.J. Transmitter release at the squid giant synapse in the presence of tetrodotoxin.Nature. 1966; 212: 49-50Crossref PubMed Scopus (34) Google Scholar, 9Bullock T.H. Hagiwara S. Intracellular recording from the giant synapse of the squid.J. Gen. Physiol. 1957; 40: 565-577Crossref PubMed Scopus (24) Google Scholar, 10Hagiwara S. Tasaki I. A study on the mechanism of impulse transmission across the giant synapse of the squid.J. Physiol. 1958; 143: 114-137Crossref PubMed Scopus (66) Google Scholar, 11Katz B. Miledi R. A study of synaptic transmission in the absence of nerve impulses.J. Physiol. 1967; 192: 407-436Crossref PubMed Scopus (488) Google Scholar]. Despite their anatomical advantages, the use of squid as a model receded over the past several decades as investigators turned to genetically tractable systems. Recently, however, two key advances have made it possible to develop techniques for the genetic manipulation of squid. The first is the CRISPR-Cas9 system for targeted gene disruption, a largely species-agnostic method [12Jinek M. Chylinski K. Fonfara I. Hauer M. Doudna J.A. Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Science. 2012; 337: 816-821Crossref PubMed Scopus (7131) Google Scholar, 13Wang H. Yang H. Shivalila C.S. Dawlaty M.M. Cheng A.W. Zhang F. Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.Cell. 2013; 153: 910-918Abstract Full Text Full Text PDF PubMed Scopus (2300) Google Scholar]. The second is the sequencing of genomes for several cephalopod species [14Albertin C.B. Simakov O. Mitros T. Wang Z.Y. Pungor J.R. Edsinger-Gonzales E. Brenner S. Ragsdale C.W. Rokhsar D.S. The octopus genome and the evolution of cephalopod neural and morphological novelties.Nature. 2015; 524: 220-224Crossref PubMed Scopus (271) Google Scholar, 15da Fonseca R.R. Couto A. Machado A.M. Brejova B. Albertin C.B. Silva F. Gardner P. Baril T. Hayward A. Campos A. et al.A draft genome sequence of the elusive giant squid, Architeuthis dux.Gigascience. 2020; 9 (Published online January 1, 2020)https://doi.org/10.1093/gigascience/giz152Crossref PubMed Scopus (14) Google Scholar, 16Belcaid M. Casaburi G. McAnulty S.J. Schmidbaur H. Suria A.M. Moriano-Gutierrez S. Pankey M.S. Oakley T.H. Kremer N. Koch E.J. et al.Symbiotic organs shaped by distinct modes of genome evolution in cephalopods.Proc. Natl. Acad. Sci. USA. 2019; 116: 3030-3035Crossref PubMed Scopus (52) Google Scholar]. If made genetically tractable, squid and other cephalopods offer a wealth of biological novelties that could spur discovery. Within invertebrates, not only do they possess by far the largest brains, they also express the most sophisticated behaviors [17Hanlon R.T. Messenger J.B. Cephalopod Behaviour. Cambridge University Press, 2018Crossref Google Scholar]. In this paper, we demonstrate efficient gene knockout in the squid Doryteuthis pealeii using CRISPR-Cas9. Ommochromes, the pigments found in squid retinas and chromatophores, are derivatives of tryptophan, and the first committed step in their synthesis is normally catalyzed by Tryptophan 2,3 Dioxygenase (TDO [18Williams T.L. DiBona C.W. Dinneen S.R. Labadie S.F.J. Chu F. Deravi L.F. Contributions of phenoxazone-based pigments to the structure and function of nanostructured granules in squid chromatophores.Langmuir. 2016; 32: 3754-3759Crossref PubMed Scopus (17) Google Scholar, 19Schwinck I. Über den Nachweis eines Redox-Pigmentes (Ommochrom) in der Haut von Sepia officinalis.Naturwissenschaften. 1953; 40: 365Crossref Scopus (5) Google Scholar, 20Aubourg S.P. Torres-Arreola W. Trigo M. Ezquerra-Brauer J.M. Partial characterization of jumbo squid skin pigment extract and its antioxidant potential in a marine oil system.Eur. J. Lipid Sci. Technol. 2016; 118: 1293-1304Crossref Scopus (14) Google Scholar]). Knocking out TDO in squid embryos efficiently eliminated pigmentation. By precisely timing CRISPR-Cas9 delivery during early development, the degree of pigmentation could be finely controlled. Genotyping revealed knockout efficiencies routinely greater than 90%. This study represents a critical advancement toward making squid genetically tractable.