Highly Efficient Knockout of a Squid Pigmentation Gene

鱿鱼巨轴突 轴突 轴浆 鱿鱼 生物 生物物理学 神经科学 生态学
作者
Karen Crawford,Juan Felipe Diaz Quiroz,Kristen M. Koenig,Namrata Ahuja,Caroline B. Albertin,Joshua J. C. Rosenthal
出处
期刊:Current Biology [Elsevier BV]
卷期号:30 (17): 3484-3490.e4 被引量:59
标识
DOI:10.1016/j.cub.2020.06.099
摘要

Seminal studies using squid as a model led to breakthroughs in neurobiology. The squid giant axon and synapse, for example, laid the foundation for our current understanding of the action potential [1Hodgkin A.L. Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. 1952; 117: 500-544Crossref PubMed Scopus (13027) Google Scholar], ionic gradients across cells [2De Weer P. Geduldig D. Electrogenic sodium pump in squid giant axon.Science. 1973; 179: 1326-1328Crossref PubMed Scopus (27) Google Scholar], voltage-dependent ion channels [3Armstrong C.M. Bezanilla F. Currents related to movement of the gating particles of the sodium channels.Nature. 1973; 242: 459-461Crossref PubMed Scopus (423) Google Scholar], molecular motors [4Vale R.D. Schnapp B.J. Mitchison T. Steuer E. Reese T.S. Sheetz M.P. Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro.Cell. 1985; 43: 623-632Abstract Full Text PDF PubMed Scopus (274) Google Scholar, 5Brady S.T. Lasek R.J. Allen R.D. Fast axonal transport in extruded axoplasm from squid giant axon.Science. 1982; 218: 1129-1131Crossref PubMed Scopus (210) Google Scholar, 6Vale R.D. Reese T.S. Sheetz M.P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility.Cell. 1985; 42: 39-50Abstract Full Text PDF PubMed Scopus (1324) Google Scholar, 7Vale R.D. Schnapp B.J. Reese T.S. Sheetz M.P. Organelle, bead, and microtubule translocations promoted by soluble factors from the squid giant axon.Cell. 1985; 40: 559-569Abstract Full Text PDF PubMed Scopus (219) Google Scholar], and synaptic transmission [8Bloedel J. Gage P.W. Llinás R. Quastel D.M.J. Transmitter release at the squid giant synapse in the presence of tetrodotoxin.Nature. 1966; 212: 49-50Crossref PubMed Scopus (34) Google Scholar, 9Bullock T.H. Hagiwara S. Intracellular recording from the giant synapse of the squid.J. Gen. Physiol. 1957; 40: 565-577Crossref PubMed Scopus (24) Google Scholar, 10Hagiwara S. Tasaki I. A study on the mechanism of impulse transmission across the giant synapse of the squid.J. Physiol. 1958; 143: 114-137Crossref PubMed Scopus (66) Google Scholar, 11Katz B. Miledi R. A study of synaptic transmission in the absence of nerve impulses.J. Physiol. 1967; 192: 407-436Crossref PubMed Scopus (488) Google Scholar]. Despite their anatomical advantages, the use of squid as a model receded over the past several decades as investigators turned to genetically tractable systems. Recently, however, two key advances have made it possible to develop techniques for the genetic manipulation of squid. The first is the CRISPR-Cas9 system for targeted gene disruption, a largely species-agnostic method [12Jinek M. Chylinski K. Fonfara I. Hauer M. Doudna J.A. Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Science. 2012; 337: 816-821Crossref PubMed Scopus (7131) Google Scholar, 13Wang H. Yang H. Shivalila C.S. Dawlaty M.M. Cheng A.W. Zhang F. Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.Cell. 2013; 153: 910-918Abstract Full Text Full Text PDF PubMed Scopus (2300) Google Scholar]. The second is the sequencing of genomes for several cephalopod species [14Albertin C.B. Simakov O. Mitros T. Wang Z.Y. Pungor J.R. Edsinger-Gonzales E. Brenner S. Ragsdale C.W. Rokhsar D.S. The octopus genome and the evolution of cephalopod neural and morphological novelties.Nature. 2015; 524: 220-224Crossref PubMed Scopus (271) Google Scholar, 15da Fonseca R.R. Couto A. Machado A.M. Brejova B. Albertin C.B. Silva F. Gardner P. Baril T. Hayward A. Campos A. et al.A draft genome sequence of the elusive giant squid, Architeuthis dux.Gigascience. 2020; 9 (Published online January 1, 2020)https://doi.org/10.1093/gigascience/giz152Crossref PubMed Scopus (14) Google Scholar, 16Belcaid M. Casaburi G. McAnulty S.J. Schmidbaur H. Suria A.M. Moriano-Gutierrez S. Pankey M.S. Oakley T.H. Kremer N. Koch E.J. et al.Symbiotic organs shaped by distinct modes of genome evolution in cephalopods.Proc. Natl. Acad. Sci. USA. 2019; 116: 3030-3035Crossref PubMed Scopus (52) Google Scholar]. If made genetically tractable, squid and other cephalopods offer a wealth of biological novelties that could spur discovery. Within invertebrates, not only do they possess by far the largest brains, they also express the most sophisticated behaviors [17Hanlon R.T. Messenger J.B. Cephalopod Behaviour. Cambridge University Press, 2018Crossref Google Scholar]. In this paper, we demonstrate efficient gene knockout in the squid Doryteuthis pealeii using CRISPR-Cas9. Ommochromes, the pigments found in squid retinas and chromatophores, are derivatives of tryptophan, and the first committed step in their synthesis is normally catalyzed by Tryptophan 2,3 Dioxygenase (TDO [18Williams T.L. DiBona C.W. Dinneen S.R. Labadie S.F.J. Chu F. Deravi L.F. Contributions of phenoxazone-based pigments to the structure and function of nanostructured granules in squid chromatophores.Langmuir. 2016; 32: 3754-3759Crossref PubMed Scopus (17) Google Scholar, 19Schwinck I. Über den Nachweis eines Redox-Pigmentes (Ommochrom) in der Haut von Sepia officinalis.Naturwissenschaften. 1953; 40: 365Crossref Scopus (5) Google Scholar, 20Aubourg S.P. Torres-Arreola W. Trigo M. Ezquerra-Brauer J.M. Partial characterization of jumbo squid skin pigment extract and its antioxidant potential in a marine oil system.Eur. J. Lipid Sci. Technol. 2016; 118: 1293-1304Crossref Scopus (14) Google Scholar]). Knocking out TDO in squid embryos efficiently eliminated pigmentation. By precisely timing CRISPR-Cas9 delivery during early development, the degree of pigmentation could be finely controlled. Genotyping revealed knockout efficiencies routinely greater than 90%. This study represents a critical advancement toward making squid genetically tractable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高贵以珊发布了新的文献求助10
1秒前
1秒前
1秒前
明理的惜雪完成签到,获得积分10
2秒前
科目三应助天地一沙鸥采纳,获得10
2秒前
Jerry完成签到,获得积分10
2秒前
LHTTT完成签到,获得积分10
2秒前
隐形曼青应助鲍建芳采纳,获得10
2秒前
包容的琦完成签到,获得积分20
2秒前
3秒前
传奇3应助mjlv采纳,获得10
3秒前
无花果应助烩面大师采纳,获得10
4秒前
涂江渝完成签到 ,获得积分10
5秒前
包容的琦发布了新的文献求助10
5秒前
HMG1COA发布了新的文献求助10
5秒前
桃子e完成签到 ,获得积分10
6秒前
6秒前
海纳百川发布了新的文献求助10
6秒前
lihua发布了新的文献求助20
7秒前
7秒前
若有人兮发布了新的文献求助10
7秒前
小超发布了新的文献求助10
8秒前
blueming发布了新的文献求助10
8秒前
刘莅完成签到,获得积分10
9秒前
9秒前
9秒前
啦啦啦完成签到,获得积分10
9秒前
奋斗的珍完成签到,获得积分10
10秒前
xiaomili发布了新的文献求助10
10秒前
李子完成签到,获得积分10
10秒前
10秒前
燕子发布了新的文献求助30
11秒前
兑润泽发布了新的文献求助10
11秒前
美好稚晴完成签到 ,获得积分10
12秒前
凉哦哦完成签到,获得积分10
12秒前
12秒前
年年关注了科研通微信公众号
12秒前
Lin关闭了Lin文献求助
13秒前
123444完成签到,获得积分20
13秒前
ying完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600