Highly Efficient Knockout of a Squid Pigmentation Gene

鱿鱼巨轴突 轴突 轴浆 鱿鱼 生物 生物物理学 神经科学 生态学
作者
Karen Crawford,Juan Felipe Diaz Quiroz,Kristen M. Koenig,Namrata Ahuja,Caroline B. Albertin,Joshua J. C. Rosenthal
出处
期刊:Current Biology [Elsevier BV]
卷期号:30 (17): 3484-3490.e4 被引量:59
标识
DOI:10.1016/j.cub.2020.06.099
摘要

Seminal studies using squid as a model led to breakthroughs in neurobiology. The squid giant axon and synapse, for example, laid the foundation for our current understanding of the action potential [1Hodgkin A.L. Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. 1952; 117: 500-544Crossref PubMed Scopus (13027) Google Scholar], ionic gradients across cells [2De Weer P. Geduldig D. Electrogenic sodium pump in squid giant axon.Science. 1973; 179: 1326-1328Crossref PubMed Scopus (27) Google Scholar], voltage-dependent ion channels [3Armstrong C.M. Bezanilla F. Currents related to movement of the gating particles of the sodium channels.Nature. 1973; 242: 459-461Crossref PubMed Scopus (423) Google Scholar], molecular motors [4Vale R.D. Schnapp B.J. Mitchison T. Steuer E. Reese T.S. Sheetz M.P. Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro.Cell. 1985; 43: 623-632Abstract Full Text PDF PubMed Scopus (274) Google Scholar, 5Brady S.T. Lasek R.J. Allen R.D. Fast axonal transport in extruded axoplasm from squid giant axon.Science. 1982; 218: 1129-1131Crossref PubMed Scopus (210) Google Scholar, 6Vale R.D. Reese T.S. Sheetz M.P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility.Cell. 1985; 42: 39-50Abstract Full Text PDF PubMed Scopus (1324) Google Scholar, 7Vale R.D. Schnapp B.J. Reese T.S. Sheetz M.P. Organelle, bead, and microtubule translocations promoted by soluble factors from the squid giant axon.Cell. 1985; 40: 559-569Abstract Full Text PDF PubMed Scopus (219) Google Scholar], and synaptic transmission [8Bloedel J. Gage P.W. Llinás R. Quastel D.M.J. Transmitter release at the squid giant synapse in the presence of tetrodotoxin.Nature. 1966; 212: 49-50Crossref PubMed Scopus (34) Google Scholar, 9Bullock T.H. Hagiwara S. Intracellular recording from the giant synapse of the squid.J. Gen. Physiol. 1957; 40: 565-577Crossref PubMed Scopus (24) Google Scholar, 10Hagiwara S. Tasaki I. A study on the mechanism of impulse transmission across the giant synapse of the squid.J. Physiol. 1958; 143: 114-137Crossref PubMed Scopus (66) Google Scholar, 11Katz B. Miledi R. A study of synaptic transmission in the absence of nerve impulses.J. Physiol. 1967; 192: 407-436Crossref PubMed Scopus (488) Google Scholar]. Despite their anatomical advantages, the use of squid as a model receded over the past several decades as investigators turned to genetically tractable systems. Recently, however, two key advances have made it possible to develop techniques for the genetic manipulation of squid. The first is the CRISPR-Cas9 system for targeted gene disruption, a largely species-agnostic method [12Jinek M. Chylinski K. Fonfara I. Hauer M. Doudna J.A. Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Science. 2012; 337: 816-821Crossref PubMed Scopus (7131) Google Scholar, 13Wang H. Yang H. Shivalila C.S. Dawlaty M.M. Cheng A.W. Zhang F. Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.Cell. 2013; 153: 910-918Abstract Full Text Full Text PDF PubMed Scopus (2300) Google Scholar]. The second is the sequencing of genomes for several cephalopod species [14Albertin C.B. Simakov O. Mitros T. Wang Z.Y. Pungor J.R. Edsinger-Gonzales E. Brenner S. Ragsdale C.W. Rokhsar D.S. The octopus genome and the evolution of cephalopod neural and morphological novelties.Nature. 2015; 524: 220-224Crossref PubMed Scopus (271) Google Scholar, 15da Fonseca R.R. Couto A. Machado A.M. Brejova B. Albertin C.B. Silva F. Gardner P. Baril T. Hayward A. Campos A. et al.A draft genome sequence of the elusive giant squid, Architeuthis dux.Gigascience. 2020; 9 (Published online January 1, 2020)https://doi.org/10.1093/gigascience/giz152Crossref PubMed Scopus (14) Google Scholar, 16Belcaid M. Casaburi G. McAnulty S.J. Schmidbaur H. Suria A.M. Moriano-Gutierrez S. Pankey M.S. Oakley T.H. Kremer N. Koch E.J. et al.Symbiotic organs shaped by distinct modes of genome evolution in cephalopods.Proc. Natl. Acad. Sci. USA. 2019; 116: 3030-3035Crossref PubMed Scopus (52) Google Scholar]. If made genetically tractable, squid and other cephalopods offer a wealth of biological novelties that could spur discovery. Within invertebrates, not only do they possess by far the largest brains, they also express the most sophisticated behaviors [17Hanlon R.T. Messenger J.B. Cephalopod Behaviour. Cambridge University Press, 2018Crossref Google Scholar]. In this paper, we demonstrate efficient gene knockout in the squid Doryteuthis pealeii using CRISPR-Cas9. Ommochromes, the pigments found in squid retinas and chromatophores, are derivatives of tryptophan, and the first committed step in their synthesis is normally catalyzed by Tryptophan 2,3 Dioxygenase (TDO [18Williams T.L. DiBona C.W. Dinneen S.R. Labadie S.F.J. Chu F. Deravi L.F. Contributions of phenoxazone-based pigments to the structure and function of nanostructured granules in squid chromatophores.Langmuir. 2016; 32: 3754-3759Crossref PubMed Scopus (17) Google Scholar, 19Schwinck I. Über den Nachweis eines Redox-Pigmentes (Ommochrom) in der Haut von Sepia officinalis.Naturwissenschaften. 1953; 40: 365Crossref Scopus (5) Google Scholar, 20Aubourg S.P. Torres-Arreola W. Trigo M. Ezquerra-Brauer J.M. Partial characterization of jumbo squid skin pigment extract and its antioxidant potential in a marine oil system.Eur. J. Lipid Sci. Technol. 2016; 118: 1293-1304Crossref Scopus (14) Google Scholar]). Knocking out TDO in squid embryos efficiently eliminated pigmentation. By precisely timing CRISPR-Cas9 delivery during early development, the degree of pigmentation could be finely controlled. Genotyping revealed knockout efficiencies routinely greater than 90%. This study represents a critical advancement toward making squid genetically tractable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助郎吟上邪采纳,获得10
刚刚
刚刚
善学以致用应助King采纳,获得10
刚刚
万能图书馆应助卷卷采纳,获得10
1秒前
华仔应助细腻代真采纳,获得10
2秒前
有点IS发布了新的文献求助10
2秒前
2秒前
共享精神应助Lmmm采纳,获得10
2秒前
3秒前
橘子发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
研友_VZG7GZ应助坚定晓兰采纳,获得10
5秒前
5秒前
Jasmine完成签到,获得积分10
5秒前
6秒前
CipherSage应助FMZ采纳,获得10
6秒前
7秒前
晏晏完成签到 ,获得积分10
7秒前
zzzz发布了新的文献求助10
7秒前
zhsy完成签到,获得积分10
7秒前
7秒前
尧九完成签到,获得积分10
8秒前
8秒前
8秒前
狄鹤轩完成签到,获得积分10
9秒前
无心的亦绿完成签到,获得积分10
9秒前
kiko完成签到,获得积分10
9秒前
10秒前
箜篌发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
现代的曲奇完成签到 ,获得积分10
10秒前
10秒前
10秒前
搜集达人应助王富贵采纳,获得10
11秒前
文静修杰发布了新的文献求助10
11秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204680
求助须知:如何正确求助?哪些是违规求助? 4383701
关于积分的说明 13650154
捐赠科研通 4241580
什么是DOI,文献DOI怎么找? 2326956
邀请新用户注册赠送积分活动 1324605
关于科研通互助平台的介绍 1276907