Accelerated fading recognition for lithium-ion batteries with Nickel-Cobalt-Manganese cathode using quantile regression method

锂离子电池 材料科学 淡出 锂(药物) 阴极 无机化学 离子 电解质 电极 电化学 化学 汽车蓄电池
作者
Caiping Zhang,Yubin Wang,Yang Gao,Fang Wang,Biqiang Mu,Weige Zhang
出处
期刊:Applied Energy [Elsevier]
卷期号:256: 113841- 被引量:23
标识
DOI:10.1016/j.apenergy.2019.113841
摘要

Abstract The requirement for energy density of lithium-ion batteries becomes more urgent due to the rising demand for driving range of electric vehicles in recent years. Meanwhile, the performance stability of batteries with high energy densities tends to deteriorate, leading to accelerating degradation and safety issues. As a result, it is critical to explore the reasons that yield the sudden degradation and to recognize the degradation knee point of Nickel-Cobalt-Manganese batteries commonly used for electric vehicles. Existing results have disclosed that the lithium deposition of negative electrode dominates the sudden degradation of battery capacity. This paper extracts key parameters that characterize the aging status to facilitate knee point recognition in engineering practice. Furthermore, a novel method that integrates quantile regression and Monte Carlo simulation method to identify the accelerated fading knee point is introduced. The dynamic safety boundary determination method for the whole battery lifetime is proposed to update and monitor the safety zone. It is verified by experiments that the recognition results of capacity degradation knee point appear within 90–95% capacity range at 25 °C, 35 °C and 45 °C conditions, which can provide an early warning before the battery fails. Using the proposed method for recognizing the sudden degradation of capacity, recognition result is effective even if the input is disturbed and has strong reliability and stability under different conditions. It is helpful to promote the sustainable and stable development of the electric vehicles and improve advanced applied energy technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助我是站长才怪采纳,获得10
1秒前
呼啦呼啦发布了新的文献求助10
2秒前
3秒前
菜鸟队长发布了新的文献求助10
5秒前
王英俊完成签到,获得积分10
5秒前
zzz应助刘坦苇采纳,获得10
5秒前
赘婿应助刘坦苇采纳,获得10
6秒前
思源应助刘坦苇采纳,获得10
6秒前
劲秉应助刘坦苇采纳,获得10
6秒前
李爱国应助豆沙冰采纳,获得10
7秒前
CodeCraft应助HS采纳,获得10
7秒前
英俊的铭应助yuyyyi采纳,获得10
8秒前
8秒前
9秒前
桃子完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
11秒前
风中的发夹完成签到,获得积分10
11秒前
11秒前
wanci应助刘坦苇采纳,获得10
11秒前
丘比特应助刘坦苇采纳,获得10
11秒前
情怀应助刘坦苇采纳,获得10
11秒前
JamesPei应助刘坦苇采纳,获得10
11秒前
Akim应助刘坦苇采纳,获得10
12秒前
Ava应助刘坦苇采纳,获得10
12秒前
小蘑菇应助刘坦苇采纳,获得30
12秒前
小二郎应助刘坦苇采纳,获得10
12秒前
思源应助刘坦苇采纳,获得10
12秒前
思源应助刘坦苇采纳,获得30
12秒前
彩色的忆丹完成签到 ,获得积分10
12秒前
momo发布了新的文献求助30
12秒前
FashionBoy应助文静的信封采纳,获得30
13秒前
归仔发布了新的文献求助10
13秒前
14秒前
昵称完成签到,获得积分10
14秒前
完美世界应助阿阿阿阿冀采纳,获得10
15秒前
1111发布了新的文献求助10
15秒前
欢呼的鲂发布了新的文献求助10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459437
求助须知:如何正确求助?哪些是违规求助? 3053861
关于积分的说明 9039026
捐赠科研通 2743219
什么是DOI,文献DOI怎么找? 1504698
科研通“疑难数据库(出版商)”最低求助积分说明 695389
邀请新用户注册赠送积分活动 694664