清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Learning Graph Representation With Generative Adversarial Nets

对抗制 计算机科学 理论计算机科学 代表(政治) 人工智能 图形 生成语法 法学 政治学 政治
作者
Hongwei Wang,Jialin Wang,Jia Wang,Miao Zhao,Weinan Zhang,Fuzheng Zhang,Wenjie Li,Xing Xie,Minyi Guo
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 3090-3103 被引量:78
标识
DOI:10.1109/tkde.2019.2961882
摘要

Graph representation learning aims to embed each vertex in a graph into a low-dimensional vector space. Existing graph representation learning methods can be classified into two categories: generative models that learn the underlying connectivity distribution in a graph, and discriminative models that predict the probability of edge between a pair of vertices. In this paper, we propose GraphGAN, an innovative graph representation learning framework unifying the above two classes of methods, in which the generative and the discriminative model play a game-theoretical minimax game. Specifically, for a given vertex, the generative model tries to fit its underlying true connectivity distribution over all other vertices and produces "fake" samples to fool the discriminative model, while the discriminative model tries to detect whether the sampled vertex is from ground truth or generated by the generative model. With the competition between these two models, both of them can alternately and iteratively boost their performance. Moreover, we propose a novel graph softmax as the implementation of the generative model to overcome the limitations of traditional softmax function, which can be proven satisfying desirable properties of normalization, graph structure awareness, and computational efficiency. Through extensive experiments on real-world datasets, we demonstrate that GraphGAN achieves substantial gains in a variety of applications, including graph reconstruction, link prediction, node classification, recommendation, and visualization, over state-of-the-art baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有人应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得50
刚刚
无极微光应助科研通管家采纳,获得50
刚刚
刚刚
刚刚
有人应助科研通管家采纳,获得10
刚刚
有人应助科研通管家采纳,获得10
刚刚
有人应助科研通管家采纳,获得10
刚刚
有人应助科研通管家采纳,获得10
刚刚
有人应助科研通管家采纳,获得10
刚刚
有人应助科研通管家采纳,获得10
1秒前
有人应助科研通管家采纳,获得10
1秒前
NINI完成签到 ,获得积分10
44秒前
Raymond完成签到,获得积分10
45秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
非哲完成签到 ,获得积分10
2分钟前
2分钟前
白瑾完成签到 ,获得积分10
2分钟前
2分钟前
飘逸的孤丹关注了科研通微信公众号
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
xinjie发布了新的文献求助10
3分钟前
3分钟前
3分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
快乐随心完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789013
求助须知:如何正确求助?哪些是违规求助? 5714309
关于积分的说明 15474060
捐赠科研通 4916947
什么是DOI,文献DOI怎么找? 2646665
邀请新用户注册赠送积分活动 1594331
关于科研通互助平台的介绍 1548791