Learning Graph Representation With Generative Adversarial Nets

计算机科学 判别式 Softmax函数 生成模型 理论计算机科学 人工智能 图形 特征学习 生成语法 顶点(图论) 模式识别(心理学) 机器学习 深度学习
作者
Hongwei Wang,Jialin Wang,Jia Wang,Miao Zhao,Weinan Zhang,Fuzheng Zhang,Wenjie Li,Xing Xie,Minyi Guo
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 3090-3103 被引量:57
标识
DOI:10.1109/tkde.2019.2961882
摘要

Graph representation learning aims to embed each vertex in a graph into a low-dimensional vector space. Existing graph representation learning methods can be classified into two categories: generative models that learn the underlying connectivity distribution in a graph, and discriminative models that predict the probability of edge between a pair of vertices. In this paper, we propose GraphGAN, an innovative graph representation learning framework unifying the above two classes of methods, in which the generative and the discriminative model play a game-theoretical minimax game. Specifically, for a given vertex, the generative model tries to fit its underlying true connectivity distribution over all other vertices and produces “fake” samples to fool the discriminative model, while the discriminative model tries to detect whether the sampled vertex is from ground truth or generated by the generative model. With the competition between these two models, both of them can alternately and iteratively boost their performance. Moreover, we propose a novel graph softmax as the implementation of the generative model to overcome the limitations of traditional softmax function, which can be proven satisfying desirable properties of normalization, graph structure awareness, and computational efficiency. Through extensive experiments on real-world datasets, we demonstrate that GraphGAN achieves substantial gains in a variety of applications, including graph reconstruction, link prediction, node classification, recommendation, and visualization, over state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
或许度完成签到,获得积分20
3秒前
嘟嘟图图发布了新的文献求助20
4秒前
4秒前
科研小秦发布了新的文献求助10
4秒前
4秒前
aa完成签到,获得积分10
6秒前
6秒前
6秒前
李呆发布了新的文献求助10
7秒前
劲秉应助美丽谷蕊采纳,获得10
7秒前
独特的高山完成签到 ,获得积分10
7秒前
灵犀完成签到,获得积分10
8秒前
Apple完成签到,获得积分10
11秒前
lsf发布了新的文献求助30
11秒前
12秒前
13秒前
领导范儿应助陈伟杰采纳,获得10
14秒前
QCB完成签到 ,获得积分10
15秒前
天天快乐应助伶俐的血茗采纳,获得10
16秒前
16秒前
ZM完成签到 ,获得积分10
16秒前
abcc1234完成签到,获得积分10
17秒前
沉默洋葱完成签到,获得积分10
17秒前
17秒前
dzjin发布了新的文献求助10
18秒前
18秒前
Shalin完成签到,获得积分10
20秒前
是真的发布了新的文献求助10
22秒前
可靠的碧凡完成签到 ,获得积分10
22秒前
22秒前
23秒前
23秒前
24秒前
skycool完成签到,获得积分10
24秒前
drwlr发布了新的文献求助10
24秒前
结实的慕灵完成签到,获得积分10
25秒前
丁静完成签到 ,获得积分10
25秒前
沧海一兰完成签到,获得积分10
26秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266148
求助须知:如何正确求助?哪些是违规求助? 2905947
关于积分的说明 8336123
捐赠科研通 2576326
什么是DOI,文献DOI怎么找? 1400415
科研通“疑难数据库(出版商)”最低求助积分说明 654786
邀请新用户注册赠送积分活动 633652