摘要
ImmunotherapyVol. 12, No. 7 CommentaryTumor immune microenvironment of EGFR-mutant non-small-cell lung cancer and its impact on therapeutic efficacyYoshiya Matsumoto & Yasuhiro KohYoshiya MatsumotoDepartment of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, JapanInternal Medicine III, Wakayama Medical University, Wakayama, JapanSearch for more papers by this author & Yasuhiro Koh*Author for correspondence: Tel.: +81 73 441 0619; Fax: +81 073 446 2877; E-mail Address: ykoh@wakayama-med.ac.jpInternal Medicine III, Wakayama Medical University, Wakayama, JapanSearch for more papers by this authorPublished Online:22 Apr 2020https://doi.org/10.2217/imt-2019-0213AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInReddit View articleKeywords: epidermal growth factor receptornon-small-cell lung cancertumor microenvironmenttumor mutational burdenReferences1. Global Burden of Disease Cancer C, Fitzmaurice C, Akinyemiju TF et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. JAMA Oncol. 4(11), 1553–1568 (2018).Crossref, Medline, Google Scholar2. Dearden S, Stevens J, Wu YL, Blowers D. Mutation incidence and coincidence in non-small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap). Ann. Oncol. 24(9), 2371–2376 (2013).Crossref, Medline, CAS, Google Scholar3. Midha A, Dearden S, Mccormack R. EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). Am. J. Cancer Res. 5(9), 2892–2911 (2015).Medline, Google Scholar4. Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350(21), 2129–2139 (2004).Crossref, Medline, CAS, Google Scholar5. Han SW, Kim TY, Hwang PG et al. Predictive and prognostic impact of epidermal growth factor receptor mutation in non-small-cell lung cancer patients treated with gefitinib. J. Clin. Oncol. 23(11), 2493–2501 (2005).Crossref, Medline, CAS, Google Scholar6. Mok TS, Wu YL, Thongprasert S et al. Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361(10), 947–957 (2009).Crossref, Medline, CAS, Google Scholar7. Maemondo M, Inoue A, Kobayashi K et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 362(25), 2380–2388 (2010).Crossref, Medline, CAS, Google Scholar8. Mitsudomi T, Morita S, Yatabe Y et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomized Phase III trial. Lancet Oncol. 11(2), 121–128 (2010).Crossref, Medline, CAS, Google Scholar9. Brahmer J, Reckamp KL, Baas P et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373(2), 123–135 (2015).Crossref, Medline, CAS, Google Scholar10. Borghaei H, Paz-Ares L, Horn L et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373(17), 1627–1639 (2015).Crossref, Medline, CAS, Google Scholar11. Herbst RS, Baas P, Kim DW et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomized controlled trial. Lancet 387(10027), 1540–1550 (2016).Crossref, Medline, CAS, Google Scholar12. Rittmeyer A, Barlesi F, Waterkamp D et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a Phase III, open-label, multicenter randomized controlled trial. Lancet 389(10066), 255–265 (2017).Crossref, Medline, Google Scholar13. Fehrenbacher L, Spira A, Ballinger M et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicenter, open-label, Phase II randomized controlled trial. Lancet 387(10030), 1837–1846 (2016).Crossref, Medline, CAS, Google Scholar14. Gainor JF, Shaw AT, Sequist LV et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small-cell lung cancer: a retrospective analysis. Clin. Cancer Res. 22(18), 4585–4593 (2016).Crossref, Medline, CAS, Google Scholar15. Lee CK, Man J, Lord S et al. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small-cell lung carcinoma: a systematic review and meta-analysis. JAMA Oncol. 4(2), 210–216 (2018).Crossref, Medline, Google Scholar16. Reck M, Rodriguez-Abreu D, Robinson AG et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375(19), 1823–1833 (2016).Crossref, Medline, CAS, Google Scholar17. Mok TSK, Wu YL, Kudaba I et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomized, open-label, controlled, Phase III trial. Lancet 393(10183), 1819–1830 (2019).Crossref, Medline, CAS, Google Scholar18. Gandhi L, Rodriguez-Abreu D, Gadgeel S et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 378(22), 2078–2092 (2018).Crossref, Medline, CAS, Google Scholar19. Paz-Ares L, Luft A, Vicente D et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N. Engl. J. Med. 379(21), 2040–2051 (2018).Crossref, Medline, CAS, Google Scholar20. Socinski MA, Jotte RM, Cappuzzo F et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378(24), 2288–2301 (2018).Crossref, Medline, CAS, Google Scholar21. Yoneshima Y, Ijichi K, Anai S et al. PD-L1 expression in lung adenocarcinoma harboring EGFR mutations or ALK rearrangements. Lung Cancer 118, 36–40 (2018).Crossref, Medline, Google Scholar22. Dong ZY, Zhang JT, Liu SY et al. EGFR mutation correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small-cell lung cancer. Oncoimmunology 6(11), e1356145 (2017).Crossref, Medline, Google Scholar23. Lisberg A, Cummings A, Goldman JW et al. A Phase II study of pembrolizumab in EGFR-mutant, PD-L1+, tyrosine kinase inhibitor naive patients with advanced NSCLC. J. Thorac. Oncol. 13(8), 1138–1145 (2018).Crossref, Medline, CAS, Google Scholar24. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science 348(6230), 69–74 (2015).Crossref, Medline, CAS, Google Scholar25. Rizvi NA, Hellmann MD, Snyder A et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small-cell lung cancer. Science 348(6230), 124–128 (2015).Crossref, Medline, CAS, Google Scholar26. Carbone DP, Reck M, Paz-Ares L et al. First-line nivolumab in Stage IV or recurrent non-small-cell lung cancer. N. Engl. J. Med. 376(25), 2415–2426 (2017).Crossref, Medline, CAS, Google Scholar27. Rizvi H, Sanchez-Vega F, La K et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) Blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J. Clin. Oncol. 36(7), 633–641 (2018).Crossref, Medline, CAS, Google Scholar28. Heigener DF, Reck M. Impact of PD-L1 expression in EGFR-positive NSCLC? The answer remains the same. J. Thorac. Oncol. 13(8), 1060–1061 (2018).Crossref, Medline, Google Scholar29. Spigel DR, Schrock AB, Fabrizio D et al. Total mutation burden (TMB) in lung cancer (LC) and relationship with response to PD-1/PD-L1 targeted therapies. J. Clin. Oncol. 34(Suppl. 15), 9017–9017 (2016).Crossref, Google Scholar30. Offin M, Rizvi H, Tenet M et al. Tumor mutation burden and efficacy of EGFR-tyrosine kinase inhibitors in patients with EGFR-mutant lung cancers. Clin. Cancer Res. 25(3), 1063–1069 (2019).Crossref, Medline, CAS, Google Scholar31. Hastings K, Yu H, Wei W et al. EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer. Ann. Oncol. 30(8), 1311–1320 (2019).Crossref, Medline, CAS, Google Scholar32. Haratani K, Hayashi H, Tanaka T et al. Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment. Ann. Oncol. 28(7), 1532–1539 (2017).Crossref, Medline, CAS, Google Scholar33. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331(6024), 1565–1570 (2011).Crossref, Medline, CAS, Google Scholar34. Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene 27(45), 5904–5912 (2008).Crossref, Medline, CAS, Google Scholar35. Teng MW, Ngiow SF, Ribas A, Smyth MJ. Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res. 75(11), 2139–2145 (2015).Crossref, Medline, CAS, Google Scholar36. Akbay EA, Koyama S, Carretero J et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 3(12), 1355–1363 (2013).Crossref, Medline, CAS, Google Scholar37. Azuma K, Ota K, Kawahara A et al. Association of PD-L1 overexpression with activating EGFR mutations in surgically resected non-small-cell lung cancer. Ann. Oncol. 25(10), 1935–1940 (2014).Crossref, Medline, CAS, Google Scholar38. Velcheti V, Schalper KA, Carvajal DE et al. Programmed death ligand-1 expression in non-small-cell lung cancer. Lab. Invest. 94(1), 107–116 (2014).Crossref, Medline, CAS, Google Scholar39. Liu SY, Dong ZY, Wu SP et al. Clinical relevance of PD-L1 expression and CD8+ T cells infiltration in patients with EGFR-mutated and ALK-rearranged lung cancer. Lung Cancer 125, 86–92 (2018).Crossref, Medline, Google Scholar40. Su S, Dong ZY, Xie Z et al. Strong programmed death ligand 1 expression predicts poor response and de novo resistance to EGFR tyrosine kinase inhibitors among NSCLC patients with EGFR mutation. J. Thorac. Oncol. 13(11), 1668–1675 (2018).Crossref, Medline, Google Scholar41. Matsumoto Y, Sawa K, Fukui M et al. Impact of tumor microenvironment on the efficacy of epidermal growth factor receptor-tyrosine kinase inhibitors in patients with EGFR-mutant non-small-cell lung cancer. Cancer Sci. 110(10), 3244–3254 (2019).Crossref, Medline, CAS, Google Scholar42. Yoshida H, Kim YH, Ozasa H et al. Nivolumab in non-small-cell lung cancer with EGFR mutation. Ann. Oncol. 29(3), 777–778 (2018).Crossref, Medline, CAS, Google Scholar43. Gettinger S, Hellmann MD, Chow LQM et al. Nivolumab Plus erlotinib in patients with EGFR-mutant advanced NSCLC. J. Thorac. Oncol. 13(9), 1363–1372 (2018).Crossref, Medline, Google Scholar44. Rudin C, Cervantes A, Dowlati A et al. MA15.02 long-term safety and clinical activity results from a Phase Ib study of erlotinib plus atezolizumab in advanced NSCLC. J. Thorac. Oncol. 13(10), S407 (2018).Crossref, Google Scholar45. Creelan BC, Yeh T, Kim S-W et al. 84OPhase I study of gefitinib (G) + durvalumab (D) for locally advanced/metastatic non-small-cell lung cancer (NSCLC) harbouring epidermal growth factor receptor (EGFR) sensitising mutations. Ann. Oncol. 30(Suppl.2), ii31–32 (2019).Crossref, Medline, Google Scholar46. Ahn MJ, Yang J, Yu H et al. 136O: osimertinib combined with durvalumab in EGFR-mutant non-small-cell lung cancer: results from the TATTON Phase Ib trial. J. Thorac. Oncol. 11(4), S115 (2016).Crossref, Medline, Google Scholar47. Ramalingam SS, Gray JE, Ohe Y et al. LBA5_PROsimertinib vs comparator EGFR-TKI as first-line treatment for EGFRm advanced NSCLC (FLAURA): final overall survival analysis. Ann. Oncol. 30(Suppl.5), v914–915 (2019).Crossref, Google ScholarFiguresReferencesRelatedDetailsCited ByOral Squamous Cell Carcinoma in Young Patients Show Higher Rates of EGFR Amplification: Implications for Novel Personalized Therapy29 November 2021 | Frontiers in Oncology, Vol. 11Immune Checkpoint Inhibitors in EGFR-Mutated NSCLC: Dusk or Dawn?Journal of Thoracic Oncology, Vol. 16, No. 8Pembrolizumab Plus Chemotherapy or Anlotinib vs. Pembrolizumab Alone in Patients With Previously Treated EGFR-Mutant NSCLC16 April 2021 | Frontiers in Oncology, Vol. 11 Vol. 12, No. 7 Follow us on social media for the latest updates Metrics Downloaded 245 times History Received 4 December 2019 Accepted 8 April 2020 Published online 22 April 2020 Published in print May 2020 Information© 2020 Future Medicine LtdKeywordsepidermal growth factor receptornon-small-cell lung cancertumor microenvironmenttumor mutational burdenFinancial & competing interests disclosureY Koh receives honoraria from AstraZeneca, Chugai Pharmaceutical and Boehringer Ingelheim. The research presented in this article received funding from AstraZeneca, Chugai Pharmaceutical, Boehringer Ingelheim, Bristol Myers Squibb and Ono Pharmaceutical. The author have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.No writing assistance was utilized in the production of this manuscript.PDF download