Research of dissolved oxygen prediction in recirculating aquaculture systems based on deep belief network

水产养殖 人工智能 人工神经网络 水质 卷积神经网络 计算机科学 环境科学 工艺工程 环境工程 工程类 渔业 生态学 生物
作者
Qin Ren,Wang Xuan-yu,Wenshu Li,Yaoguang Wei,Dong An
出处
期刊:Aquacultural Engineering [Elsevier BV]
卷期号:90: 102085-102085 被引量:48
标识
DOI:10.1016/j.aquaeng.2020.102085
摘要

Recirculating aquaculture has received more and more attention because of its high efficiency of treatment and recycling of aquaculture wastewater. The content of dissolved oxygen is an important indicator of control in recirculating aquaculture, its content and dynamic changes have great impact on the healthy growth of fish. However, changes of dissolved oxygen content are affected by many factors, and there is an obvious time lag between control regulation and effects of dissolved oxygen. To ensure the aquaculture production safety, it is necessary to predict the dissolved oxygen content in advance. The prediction model based on deep belief network has been proposed in this paper to realize the dissolved oxygen content prediction. A variational mode decomposition (VMD) data processing method has been adopted to evaluate the original data space, it takes the data which has been decomposed by the VMD as the input of deep belief network (DBN) to realize the prediction. The VMD method can effectively separate and denoise the raw data, highlight the relations among data features, and effectively improve the quality of the neural network input. The proposed model can quickly and accurately predict the dissolved oxygen content in time series, and the prediction performance meets the needs of actual production. When compared with bagging, AdaBoost, decision tree and convolutional neural network, the VMD-DBN model produces higher prediction accuracy and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏剑心完成签到 ,获得积分10
刚刚
1秒前
yuzu完成签到,获得积分10
2秒前
科目三应助snwnqi采纳,获得10
3秒前
4秒前
立冏商发布了新的文献求助10
5秒前
Tong完成签到,获得积分10
5秒前
6秒前
丹丹发布了新的文献求助10
6秒前
夏安发布了新的文献求助10
6秒前
左嫣娆完成签到,获得积分10
6秒前
幸福大白发布了新的文献求助10
8秒前
和谐绍辉发布了新的文献求助10
9秒前
Tong发布了新的文献求助10
11秒前
12秒前
完美世界应助薛定谔的猫采纳,获得10
15秒前
医科大准博士生完成签到,获得积分10
15秒前
彭于晏应助背后如雪采纳,获得10
15秒前
情怀应助丹丹采纳,获得10
17秒前
18秒前
19秒前
19秒前
22秒前
24秒前
李健的小迷弟应助好滴捏采纳,获得10
24秒前
24秒前
任性迎南发布了新的文献求助10
25秒前
25秒前
25秒前
27秒前
Ava应助优美的钢铁侠采纳,获得10
28秒前
狂野未来发布了新的文献求助10
29秒前
29秒前
小白白发布了新的文献求助30
31秒前
肆_完成签到 ,获得积分10
31秒前
超人完成签到 ,获得积分20
31秒前
32秒前
CipherSage应助花椒小透明采纳,获得10
33秒前
zhangnan完成签到,获得积分10
33秒前
花椒泡茶发布了新的文献求助10
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993569
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265160
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712