Multi-scale attention U-net for segmenting clinical target volume in graves’ ophthalmopathy

分割 计算机科学 人工智能 亚临床感染 卷积神经网络 比例(比率) 体积热力学 残余物 深度学习 模式识别(心理学) 机器学习 医学 病理 算法 地图学 量子力学 物理 地理
作者
Junjie Hu,Ying Song,Lei Zhang,Song Bai,Yi Zhang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:427: 74-83 被引量:10
标识
DOI:10.1016/j.neucom.2020.11.028
摘要

Graves’ ophthalmopathy (GO) is an autoimmune inflammatory disorder associated with thyroid disease, and radiotherapy is an effective treatment that causes few side effects among patients in the moderate-to-severe stage. The clinical target volume (CTV) refers to tissues with potential tumor spread or subclinical diseases, where accurate segmentation of these tissues is required for the successful radiotherapy. Traditional segmentation methods for the CTV are based on low-level hand-crafted features that require significant domain knowledge and sensitive to the variations. To overcome these shortcomings, a novel neural network architecture called multi-scale attention U-Net (MAU-Net) is proposed to automatically segment the CTV by computed tomography for GO disease. Abstract features ranging from low- to high-levels are extracted by a deep residual network, then processed by a multi-scale module composed of multiple convolutional operations to accommodate various scales of the CTV. A novel attention module is proposed and applied following the multi-scale module, which uses signals from high-level features to selectively highlight the low-features. A total of 178 CT cases are used to train and evaluate the proposed MAU-Net. The experimental results show that MAU-Net achieves higher segmentation accuracy than the state-of-the-art methods. The MAU-Net converges more quickly in the training phase, and achieves lower error on the validation dataset than the vanilla U-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哭泣笑阳发布了新的文献求助10
2秒前
3秒前
Emmm完成签到,获得积分10
3秒前
3秒前
3秒前
lijin发布了新的文献求助10
4秒前
听云完成签到 ,获得积分10
4秒前
北海应助dream采纳,获得10
4秒前
Awoe发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
玛卡巴卡发布了新的文献求助10
8秒前
彭于晏应助champagne采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
lii应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
kingwill应助科研通管家采纳,获得50
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
fts发布了新的文献求助10
13秒前
13秒前
深情安青应助小小铱采纳,获得10
13秒前
大个应助夏五鱼采纳,获得10
14秒前
14秒前
15秒前
SYLH应助蟹老板采纳,获得10
16秒前
慕青应助欣慰的乌冬面采纳,获得20
17秒前
斯文败类应助黑尼格采纳,获得10
17秒前
阿喔完成签到,获得积分10
17秒前
小火苗发布了新的文献求助10
18秒前
ywy完成签到,获得积分10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976058
求助须知:如何正确求助?哪些是违规求助? 3520294
关于积分的说明 11202245
捐赠科研通 3256804
什么是DOI,文献DOI怎么找? 1798471
邀请新用户注册赠送积分活动 877610
科研通“疑难数据库(出版商)”最低求助积分说明 806496