Gait variability is sensitive to detect Parkinson’s disease patients at high fall risk

步态 物理医学与康复 逻辑回归 接收机工作特性 步态分析 医学 帕金森病 后备箱 矢状面 物理疗法 疾病 内科学 生态学 生物 放射科
作者
Lin Ma,Taomian Mi,Qi Jia,Chao Han,Jagadish K. Chhetri,Piu Chan
出处
期刊:International Journal of Neuroscience [Informa]
卷期号:132 (9): 888-893 被引量:11
标识
DOI:10.1080/00207454.2020.1849189
摘要

Gait disturbance is an important risk factor for falls in Parkinson's disease (PD). Using wearable sensors, we can obtain the spatiotemporal parameters of gait and calculate the gait variability. This prospective study aims to objectively evaluate the gait characteristics of PD fallers, and further explore the relationship between spatiotemporal parameters of gait, gait variability and falls in PD patients followed for six months.Fifty-one PD patients were enrolled in this study. A seven-meter timed up and go test was performed. Gait characteristics were determined by a gait analysis system. Patients were followed monthly by telephone until the occurrence of falls or till the end of six months. The patients were categorized into fallers and non-fallers based on whether fell during the follow-up period. Gait parameters were compared between two groups, and binary logistic regression was used to establish the falls prediction model. In the receiver-operating characteristic curve, area under the curve (AUC) was utilized to evaluate the prediction accuracy of each indicator.All subjects completed the follow-up, and 14 (27.5%) patients reported falls. PD fallers had greater gait variability. The range of motion of the trunk in sagittal plane variability was an independent risk factor for falls and achieved moderate prediction accuracy (AUC = 0.751), and the logistic regression model achieved a good accuracy of falls prediction (AUC = 0.838).Increased gait variability is a significant feature of PD fallers and is more sensitive to detect PD patients at high risk of falls than spatiotemporal parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
加油加油发布了新的文献求助10
1秒前
lili完成签到 ,获得积分10
2秒前
文剑武书生完成签到,获得积分10
3秒前
科研通AI5应助无限鞅采纳,获得10
3秒前
3秒前
852应助木棉采纳,获得10
3秒前
4秒前
卓哥完成签到,获得积分10
5秒前
6秒前
Agan发布了新的文献求助10
6秒前
6秒前
7秒前
morlison发布了新的文献求助10
7秒前
科研通AI5应助金色年华采纳,获得10
9秒前
充电宝应助kh453采纳,获得10
9秒前
正经俠发布了新的文献求助10
9秒前
一衣发布了新的文献求助20
10秒前
可爱的函函应助药学牛马采纳,获得10
10秒前
XM发布了新的文献求助10
10秒前
专注之双完成签到,获得积分10
11秒前
SciGPT应助十一采纳,获得10
11秒前
11秒前
A1234完成签到,获得积分10
12秒前
刘铭晨发布了新的文献求助10
13秒前
孙冉冉完成签到 ,获得积分10
16秒前
16秒前
17秒前
17秒前
大模型应助hhzz采纳,获得10
18秒前
一只智慧喵完成签到,获得积分10
18秒前
科目三应助Fundamental采纳,获得10
19秒前
19秒前
miumiuka发布了新的文献求助10
20秒前
greenPASS666发布了新的文献求助10
21秒前
xuanxuan发布了新的文献求助10
21秒前
zfy发布了新的文献求助10
23秒前
23秒前
23秒前
Maor完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808