亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Design and Analysis of a Human–Machine Interaction System for Researching Human’s Dynamic Emotion

计算机科学 马尔科夫蒙特卡洛 人工智能 一致性(知识库) 情感计算 对话框 隐马尔可夫模型 序列(生物学) 自然语言处理 机器学习 贝叶斯概率 万维网 生物 遗传学
作者
Xiao Sun,Zhengmeng Pei,Chen Zhang,Guoqiang Li,Jianhua Tao
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (10): 6111-6121 被引量:13
标识
DOI:10.1109/tsmc.2019.2958094
摘要

Dynamic emotion is typically used to facilitate human–machine interactions. Conversational data from social media contain a considerable amount of useful information, and such data are the foundation for researching dynamic and artificial emotion. At present, most human–machine interaction systems focus on the complexity and accuracy of the dialog but neglect the emotional characteristics of the speaker. When generating a dialog considering the emotional personality of the interlocutor, controlling, and guiding the dialog to a specified direction are essential. This article presents a system for studying dynamic emotions in human-computer interaction from the perspective of emotional transfer and guidance. Based on the emotional state of the interlocutor and the distribution of emotional transfer, the process of emotional transfer is simulated and sampled, and the sequence of emotional guidance is generated. In this system, two algorithms are proposed. A generative Markov chain Monte Carlo (GEN-MCMC) algorithm is proposed to generate a variety of emotional transfer sequences that fit the talke's personality dynamically based on the real-world dialog. Further, a guiding MCMC (GUI-MCMC) algorithm-based GEN-MCMC is proposed to generate the emotional guiding sequences. The generated emotional sequences by GEN-MCMC were evaluated in two aspects: 1) consistency and 2) diversity. The experimental results show that the GEN-MCMC algorithm performs better than the general sequence generation algorithm in terms of consistency and diversity in generating emotional states. The GUI-MCMC was able to generate a proper stimulus sequence when given the first and target emotions. An emotional stimulus sequence can simulate the emotional transfer of the interlocutor in the process of dialogue, and give the observer appropriate reference to guide and control the emotions of dialogue. The experimental results show that the proposed system can effectively model the dynamic emotion in emotional transfer and guidance, which can be further used to build chat robots, intelligent assistants, and human–machine interaction systems. The models can also be used for emotional induction and enhance the feel-good or feel-terrible factor in human–machine communication applications, such as medical treatment of mental diseases, interrogation, and psychological attack and defense.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
38秒前
39秒前
Akim应助周城采纳,获得10
43秒前
浮游应助Nan采纳,获得10
43秒前
49秒前
55秒前
周城发布了新的文献求助10
55秒前
菠萝吹雪完成签到,获得积分10
57秒前
神明完成签到 ,获得积分10
57秒前
菠萝吹雪发布了新的文献求助10
1分钟前
Takahara2000完成签到,获得积分10
2分钟前
Becky完成签到 ,获得积分10
3分钟前
思源应助虚幻心锁采纳,获得10
3分钟前
3分钟前
虚幻心锁发布了新的文献求助10
3分钟前
虚幻心锁完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
美满的梦蕊完成签到,获得积分20
4分钟前
4分钟前
欲扬先抑完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
阿尔法贝塔完成签到 ,获得积分10
5分钟前
6分钟前
欲扬先抑发布了新的文献求助10
6分钟前
6分钟前
7分钟前
儒雅海秋完成签到,获得积分10
8分钟前
从容芮应助科研通管家采纳,获得30
8分钟前
小西完成签到 ,获得积分10
9分钟前
9分钟前
胖小羊完成签到 ,获得积分10
9分钟前
gqw3505完成签到,获得积分10
10分钟前
从容芮应助科研通管家采纳,获得30
10分钟前
从容芮应助科研通管家采纳,获得30
10分钟前
虚线完成签到 ,获得积分10
11分钟前
11分钟前
11分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5127419
求助须知:如何正确求助?哪些是违规求助? 4330459
关于积分的说明 13493363
捐赠科研通 4166074
什么是DOI,文献DOI怎么找? 2283752
邀请新用户注册赠送积分活动 1284784
关于科研通互助平台的介绍 1224800