Design and Analysis of a Human–Machine Interaction System for Researching Human’s Dynamic Emotion

计算机科学 马尔科夫蒙特卡洛 人工智能 一致性(知识库) 情感计算 对话框 隐马尔可夫模型 序列(生物学) 自然语言处理 机器学习 贝叶斯概率 万维网 生物 遗传学
作者
Xiao Sun,Zhengmeng Pei,Chen Zhang,Guoqiang Li,Jianhua Tao
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (10): 6111-6121 被引量:13
标识
DOI:10.1109/tsmc.2019.2958094
摘要

Dynamic emotion is typically used to facilitate human–machine interactions. Conversational data from social media contain a considerable amount of useful information, and such data are the foundation for researching dynamic and artificial emotion. At present, most human–machine interaction systems focus on the complexity and accuracy of the dialog but neglect the emotional characteristics of the speaker. When generating a dialog considering the emotional personality of the interlocutor, controlling, and guiding the dialog to a specified direction are essential. This article presents a system for studying dynamic emotions in human-computer interaction from the perspective of emotional transfer and guidance. Based on the emotional state of the interlocutor and the distribution of emotional transfer, the process of emotional transfer is simulated and sampled, and the sequence of emotional guidance is generated. In this system, two algorithms are proposed. A generative Markov chain Monte Carlo (GEN-MCMC) algorithm is proposed to generate a variety of emotional transfer sequences that fit the talke's personality dynamically based on the real-world dialog. Further, a guiding MCMC (GUI-MCMC) algorithm-based GEN-MCMC is proposed to generate the emotional guiding sequences. The generated emotional sequences by GEN-MCMC were evaluated in two aspects: 1) consistency and 2) diversity. The experimental results show that the GEN-MCMC algorithm performs better than the general sequence generation algorithm in terms of consistency and diversity in generating emotional states. The GUI-MCMC was able to generate a proper stimulus sequence when given the first and target emotions. An emotional stimulus sequence can simulate the emotional transfer of the interlocutor in the process of dialogue, and give the observer appropriate reference to guide and control the emotions of dialogue. The experimental results show that the proposed system can effectively model the dynamic emotion in emotional transfer and guidance, which can be further used to build chat robots, intelligent assistants, and human–machine interaction systems. The models can also be used for emotional induction and enhance the feel-good or feel-terrible factor in human–machine communication applications, such as medical treatment of mental diseases, interrogation, and psychological attack and defense.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小趴菜完成签到,获得积分10
2秒前
Jasper应助tr采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
CHH发布了新的文献求助10
3秒前
nihaoya发布了新的文献求助10
4秒前
科研通AI6应助吉如天采纳,获得10
4秒前
脑洞疼应助17采纳,获得10
4秒前
4秒前
遇上就这样吧应助liyu采纳,获得200
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
yu发布了新的文献求助10
7秒前
NiNi完成签到,获得积分10
7秒前
23发布了新的文献求助10
7秒前
李爱国应助木头采纳,获得10
7秒前
JIRUIYI发布了新的文献求助10
7秒前
西门问道完成签到,获得积分10
7秒前
想学习发布了新的文献求助10
8秒前
英姑应助逸风望采纳,获得10
8秒前
tlotw41发布了新的文献求助10
8秒前
斯文败类应助咚巴拉采纳,获得10
8秒前
9秒前
zz发布了新的文献求助10
9秒前
斯文败类应助LQY采纳,获得10
9秒前
留胡子的不弱完成签到 ,获得积分10
10秒前
HAN完成签到,获得积分10
10秒前
感动的煜城完成签到,获得积分10
12秒前
务实的以松完成签到,获得积分10
13秒前
15秒前
15秒前
tlotw41完成签到,获得积分10
16秒前
dingz完成签到,获得积分0
16秒前
17秒前
Irissun完成签到,获得积分10
17秒前
大大完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525150
求助须知:如何正确求助?哪些是违规求助? 4615463
关于积分的说明 14548366
捐赠科研通 4553496
什么是DOI,文献DOI怎么找? 2495334
邀请新用户注册赠送积分活动 1475898
关于科研通互助平台的介绍 1447659