Design and Analysis of a Human–Machine Interaction System for Researching Human’s Dynamic Emotion

计算机科学 马尔科夫蒙特卡洛 人工智能 一致性(知识库) 情感计算 对话框 隐马尔可夫模型 序列(生物学) 自然语言处理 机器学习 贝叶斯概率 万维网 生物 遗传学
作者
Xiao Sun,Zhengmeng Pei,Chen Zhang,Guoqiang Li,Jianhua Tao
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (10): 6111-6121 被引量:13
标识
DOI:10.1109/tsmc.2019.2958094
摘要

Dynamic emotion is typically used to facilitate human–machine interactions. Conversational data from social media contain a considerable amount of useful information, and such data are the foundation for researching dynamic and artificial emotion. At present, most human–machine interaction systems focus on the complexity and accuracy of the dialog but neglect the emotional characteristics of the speaker. When generating a dialog considering the emotional personality of the interlocutor, controlling, and guiding the dialog to a specified direction are essential. This article presents a system for studying dynamic emotions in human-computer interaction from the perspective of emotional transfer and guidance. Based on the emotional state of the interlocutor and the distribution of emotional transfer, the process of emotional transfer is simulated and sampled, and the sequence of emotional guidance is generated. In this system, two algorithms are proposed. A generative Markov chain Monte Carlo (GEN-MCMC) algorithm is proposed to generate a variety of emotional transfer sequences that fit the talke's personality dynamically based on the real-world dialog. Further, a guiding MCMC (GUI-MCMC) algorithm-based GEN-MCMC is proposed to generate the emotional guiding sequences. The generated emotional sequences by GEN-MCMC were evaluated in two aspects: 1) consistency and 2) diversity. The experimental results show that the GEN-MCMC algorithm performs better than the general sequence generation algorithm in terms of consistency and diversity in generating emotional states. The GUI-MCMC was able to generate a proper stimulus sequence when given the first and target emotions. An emotional stimulus sequence can simulate the emotional transfer of the interlocutor in the process of dialogue, and give the observer appropriate reference to guide and control the emotions of dialogue. The experimental results show that the proposed system can effectively model the dynamic emotion in emotional transfer and guidance, which can be further used to build chat robots, intelligent assistants, and human–machine interaction systems. The models can also be used for emotional induction and enhance the feel-good or feel-terrible factor in human–machine communication applications, such as medical treatment of mental diseases, interrogation, and psychological attack and defense.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
星辰大海应助kakafly采纳,获得10
6秒前
licheng完成签到,获得积分10
7秒前
9秒前
10秒前
GXW完成签到,获得积分10
10秒前
养猪大户完成签到 ,获得积分10
10秒前
11秒前
SerCheung完成签到,获得积分10
12秒前
背书强完成签到 ,获得积分10
15秒前
无心的天真完成签到 ,获得积分10
17秒前
小g完成签到,获得积分10
21秒前
22秒前
大灰狼完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
光之美少女完成签到 ,获得积分10
24秒前
木子完成签到 ,获得积分10
24秒前
姚琛完成签到 ,获得积分10
27秒前
马登完成签到,获得积分10
27秒前
矮小的凡阳完成签到 ,获得积分10
34秒前
白熊完成签到 ,获得积分10
45秒前
JOY完成签到 ,获得积分10
45秒前
bnvgx完成签到 ,获得积分10
45秒前
量子星尘发布了新的文献求助10
47秒前
爱科研的小虞完成签到 ,获得积分10
49秒前
糕糕完成签到 ,获得积分10
50秒前
51秒前
好好好完成签到 ,获得积分10
52秒前
端庄洪纲完成签到 ,获得积分10
54秒前
56秒前
阿白完成签到 ,获得积分10
1分钟前
风中的棒棒糖完成签到 ,获得积分10
1分钟前
时深完成签到 ,获得积分10
1分钟前
Chloe完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426936
求助须知:如何正确求助?哪些是违规求助? 4540484
关于积分的说明 14172261
捐赠科研通 4458420
什么是DOI,文献DOI怎么找? 2445015
邀请新用户注册赠送积分活动 1436024
关于科研通互助平台的介绍 1413506