数学
李普希茨连续性
独特性
随机动力系统
吸引子
Bochner空间
非线性系统
数学分析
格子(音乐)
随机场
统计物理学
巴拿赫空间
线性系统
Lp空间
线性动力系统
物理
统计
Banach流形
量子力学
声学
作者
Bixiang Wang,Renhai Wang
标识
DOI:10.1080/07362994.2019.1679646
摘要
We study the random dynamics of the N-dimensional stochastic Schrödinger lattice systems with locally Lipschitz diffusion terms driven by locally Lipschitz nonlinear noise. We first prove the existence and uniqueness of solutions and define a mean random dynamical system associated with the solution operators. We then establish the existence and uniqueness of weak pullback random attractors in a Bochner space. We finally prove the existence of invariant measures of the stochastic equation in the space of complex-valued square-summable sequences. The tightness of a family of probability distributions of solutions is derived by the uniform estimates on the tails of the solutions at far field.
科研通智能强力驱动
Strongly Powered by AbleSci AI