Deep learning uncertainty and confidence calibration for the five-class polyp classification from colonoscopy

可解释性 人工智能 机器学习 校准 计算机科学 模式识别(心理学) 贝叶斯概率 深度学习 数学 数据挖掘 统计
作者
Gustavo Carneiro,Leonardo Zorrón Cheng Tao Pu,Rajvinder Singh,Alastair D. Burt
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:62: 101653-101653 被引量:56
标识
DOI:10.1016/j.media.2020.101653
摘要

There are two challenges associated with the interpretability of deep learning models in medical image analysis applications that need to be addressed: confidence calibration and classification uncertainty. Confidence calibration associates the classification probability with the likelihood that it is actually correct – hence, a sample that is classified with confidence X% has a chance of X% of being correctly classified. Classification uncertainty estimates the noise present in the classification process, where such noise estimate can be used to assess the reliability of a particular classification result. Both confidence calibration and classification uncertainty are considered to be helpful in the interpretation of a classification result produced by a deep learning model, but it is unclear how much they affect classification accuracy and calibration, and how they interact. In this paper, we study the roles of confidence calibration (via post-process temperature scaling) and classification uncertainty (computed either from classification entropy or the predicted variance produced by Bayesian methods) in deep learning models. Results suggest that calibration and uncertainty improve classification interpretation and accuracy. This motivates us to propose a new Bayesian deep learning method that relies both on calibration and uncertainty to improve classification accuracy and model interpretability. Experiments are conducted on a recently proposed five-class polyp classification problem, using a data set containing 940 high-quality images of colorectal polyps, and results indicate that our proposed method holds the state-of-the-art results in terms of confidence calibration and classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456发布了新的文献求助10
刚刚
艾米完成签到,获得积分10
1秒前
小二郎完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
科目三应助肉肉采纳,获得10
3秒前
3秒前
3秒前
WHH发布了新的文献求助20
3秒前
keke发布了新的文献求助10
4秒前
美好芷波发布了新的文献求助20
5秒前
5秒前
所所应助shmily采纳,获得10
5秒前
Singularity应助九九九采纳,获得10
5秒前
科研通AI2S应助九九九采纳,获得10
5秒前
5秒前
个性的紫菜应助安可瓶子采纳,获得10
6秒前
云飞扬发布了新的文献求助10
6秒前
jin发布了新的文献求助10
6秒前
6秒前
7秒前
皮卡丘发布了新的文献求助20
7秒前
汉堡包应助Stormi采纳,获得10
8秒前
9秒前
俗签发布了新的文献求助10
9秒前
喜欢年糕发布了新的文献求助10
11秒前
科研通AI2S应助WHH采纳,获得10
11秒前
fouli发布了新的文献求助10
12秒前
12秒前
zzn发布了新的文献求助10
13秒前
uu发布了新的文献求助20
13秒前
未来可期完成签到,获得积分20
15秒前
15秒前
seattle发布了新的文献求助10
17秒前
666发布了新的文献求助10
18秒前
赘婿应助皮卡丘采纳,获得10
18秒前
传奇3应助加油呀采纳,获得10
19秒前
springkaka完成签到,获得积分0
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145597
求助须知:如何正确求助?哪些是违规求助? 2797033
关于积分的说明 7822546
捐赠科研通 2453369
什么是DOI,文献DOI怎么找? 1305607
科研通“疑难数据库(出版商)”最低求助积分说明 627514
版权声明 601464