Deep learning uncertainty and confidence calibration for the five-class polyp classification from colonoscopy

可解释性 人工智能 机器学习 校准 计算机科学 模式识别(心理学) 贝叶斯概率 深度学习 数学 数据挖掘 统计
作者
Gustavo Carneiro,Leonardo Zorrón Cheng Tao Pu,Rajvinder Singh,Alastair D. Burt
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:62: 101653-101653 被引量:56
标识
DOI:10.1016/j.media.2020.101653
摘要

There are two challenges associated with the interpretability of deep learning models in medical image analysis applications that need to be addressed: confidence calibration and classification uncertainty. Confidence calibration associates the classification probability with the likelihood that it is actually correct – hence, a sample that is classified with confidence X% has a chance of X% of being correctly classified. Classification uncertainty estimates the noise present in the classification process, where such noise estimate can be used to assess the reliability of a particular classification result. Both confidence calibration and classification uncertainty are considered to be helpful in the interpretation of a classification result produced by a deep learning model, but it is unclear how much they affect classification accuracy and calibration, and how they interact. In this paper, we study the roles of confidence calibration (via post-process temperature scaling) and classification uncertainty (computed either from classification entropy or the predicted variance produced by Bayesian methods) in deep learning models. Results suggest that calibration and uncertainty improve classification interpretation and accuracy. This motivates us to propose a new Bayesian deep learning method that relies both on calibration and uncertainty to improve classification accuracy and model interpretability. Experiments are conducted on a recently proposed five-class polyp classification problem, using a data set containing 940 high-quality images of colorectal polyps, and results indicate that our proposed method holds the state-of-the-art results in terms of confidence calibration and classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小园饼干发布了新的文献求助10
1秒前
星辰大海应助彩色的向珊采纳,获得10
2秒前
田様应助妩媚的依白采纳,获得50
3秒前
3秒前
123完成签到,获得积分10
3秒前
酷波er应助makabaka采纳,获得10
4秒前
尔玉完成签到 ,获得积分10
6秒前
搞科研的Qq完成签到 ,获得积分10
6秒前
piko11发布了新的文献求助10
7秒前
泽锦臻发布了新的文献求助10
7秒前
Ava应助Dr.Liujun采纳,获得10
8秒前
9秒前
9秒前
634301059完成签到 ,获得积分10
9秒前
9秒前
香蕉觅云应助qq采纳,获得10
11秒前
完美世界应助HZN采纳,获得10
11秒前
6260完成签到,获得积分10
12秒前
14秒前
CC发布了新的文献求助10
16秒前
laser完成签到,获得积分10
19秒前
倩倩完成签到,获得积分10
19秒前
今后应助l老王采纳,获得10
21秒前
laser发布了新的文献求助30
21秒前
22秒前
23秒前
早早入眠完成签到,获得积分10
24秒前
25秒前
无奈梦岚发布了新的文献求助10
26秒前
芋头发布了新的文献求助10
27秒前
千千完成签到,获得积分10
27秒前
ZWZ完成签到,获得积分10
28秒前
香蕉觅云应助洪洪采纳,获得10
28秒前
Jiatu_Li发布了新的文献求助10
29秒前
丘比特应助淡定的过客采纳,获得10
29秒前
芭拉芭拉叭完成签到,获得积分20
30秒前
LiM完成签到,获得积分10
31秒前
33秒前
芋头完成签到,获得积分10
33秒前
真实的珠完成签到,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533023
关于积分的说明 11260405
捐赠科研通 3272329
什么是DOI,文献DOI怎么找? 1805693
邀请新用户注册赠送积分活动 882626
科研通“疑难数据库(出版商)”最低求助积分说明 809425