Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer

生物炭 催化作用 化学 单线态氧 电子转移 氮气 光化学 降级(电信) 化学工程 热解 激进的 氧气 有机化学 电信 计算机科学 工程类
作者
Shujing Ye,Guangming Zeng,Xiaofei Tan,Haipeng Wu,Jie Liang,Biao Song,Ning Tang,Peng Zhang,Yuanyuan Yang,Qiang Chen,Xiaopei Li
出处
期刊:Applied Catalysis B-environmental [Elsevier BV]
卷期号:269: 118850-118850 被引量:668
标识
DOI:10.1016/j.apcatb.2020.118850
摘要

Advanced oxidation has great promise in the degradation of organic pollutants, but the high preparation requirements, adjustment difficulty, high cost, potential hazard, and low repeatability of catalysts limit the practical applications of this technology. In this study, a metal-free biochar-based catalyst derived from biomass fiber was prepared assisted by graphitization and nitrogen incorporation (PGBF-N). The heterogeneous catalysis of peroxymonosulfate (PMS) was triggered by PGBF-N with degradation rate 7 times higher than that of pristine biochar. The high catalytic efficiency was attributed to the accelerated electron transfer originated from the high degree of graphitization and nitrogen functionalization of PGBF-N, in which the non-radical pathways containing carbon-bridge and singlet oxygen-mediated oxidation were elucidated as the predominant pathways for tetracycline degradation, instead of the dominant role of radical pathway in pristine biochar. Vacancies and defective edges formed on sp2-hybridized carbon framework as well as the nitrogen doping sites and ketonic group of PGNF-N were considered as possible active sites. The excellent degradation rate in actual water indicated that the PGBF-N/PMS system dominated by non-radical pathway exhibited a high anti-interference ability to surrounding organic or inorganic compounds. This study provides a facile protocol for converting biomass fiber into functional catalyst and enables underlying insight in mediating dominated degradation mechanism of heterogeneous catalysis by biochar fiber.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许容完成签到,获得积分10
刚刚
科研人完成签到 ,获得积分10
刚刚
ikun6666发布了新的文献求助10
1秒前
1秒前
科目三应助xhuryts采纳,获得10
1秒前
Brooks完成签到,获得积分10
1秒前
寂寞的小夏完成签到,获得积分10
1秒前
yuanyuan完成签到,获得积分10
2秒前
田様应助心灵美的犀牛采纳,获得10
2秒前
甜美的翠桃完成签到,获得积分10
2秒前
2秒前
chenng发布了新的文献求助30
2秒前
lixiaoya完成签到,获得积分10
3秒前
彼得大帝完成签到,获得积分10
3秒前
科研通AI6应助黄花采纳,获得10
3秒前
李琛完成签到,获得积分10
3秒前
烂漫夜梦完成签到,获得积分10
3秒前
肉片牛帅帅完成签到,获得积分10
3秒前
锌小子完成签到,获得积分10
3秒前
达拉崩吧完成签到,获得积分10
3秒前
小龙虾发布了新的文献求助10
3秒前
芝士椰果完成签到,获得积分10
3秒前
Jeff_Lin应助fantexi113采纳,获得10
4秒前
风中的觅夏完成签到,获得积分10
4秒前
Survive完成签到,获得积分10
4秒前
wqy发布了新的文献求助10
4秒前
12334完成签到,获得积分10
4秒前
5秒前
5秒前
Yongander发布了新的文献求助10
6秒前
浮游应助Lily采纳,获得10
6秒前
everglow完成签到,获得积分20
6秒前
6秒前
obaica完成签到,获得积分10
7秒前
清欢渡完成签到,获得积分10
7秒前
Schofield完成签到 ,获得积分10
7秒前
fxf完成签到,获得积分10
8秒前
丘比特应助活泼蜡烛采纳,获得10
8秒前
11完成签到,获得积分10
8秒前
有魅力的盼旋完成签到 ,获得积分10
9秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5150586
求助须知:如何正确求助?哪些是违规求助? 4346405
关于积分的说明 13532587
捐赠科研通 4189075
什么是DOI,文献DOI怎么找? 2297309
邀请新用户注册赠送积分活动 1297695
关于科研通互助平台的介绍 1242162