Construction of a virtual PM2.5 observation network in China based on high-density surface meteorological observations using the Extreme Gradient Boosting model

均方误差 环境科学 后发 气象学 梯度升压 统计 气候学 计算机科学 数学 地理 随机森林 地质学 机器学习
作者
Ke Gui,Huizheng Che,Zhaoliang Zeng,Yaqiang Wang,Shixian Zhai,Zemin Wang,Ming Luo,Lei Zhang,Tingting Liao,Huiling Zhao,Lei Li,Yu Zheng,Xiaoye Zhang
出处
期刊:Environment International [Elsevier]
卷期号:141: 105801-105801 被引量:81
标识
DOI:10.1016/j.envint.2020.105801
摘要

With increasing public concerns on air pollution in China, there is a demand for long-term continuous PM2.5 datasets. However, it was not until the end of 2012 that China established a national PM2.5 observation network. Before that, satellite-retrieved aerosol optical depth (AOD) was frequently used as a primary predictor to estimate surface PM2.5. Nevertheless, satellite-retrieved AOD often encounter incomplete daily coverage due to its sampling frequency and interferences from cloud, which greatly affect the representation of these AOD-based PM2.5. Here, we constructed a virtual ground-based PM2.5 observation network at 1180 meteorological sites across China using the Extreme Gradient Boosting (XGBoost) model with high-density meteorological observations as major predictors. Cross-validation of the XGBoost model showed strong robustness and high accuracy in its estimation of the daily (monthly) PM2.5 across China in 2018, with R2, root-mean-square error (RMSE) and mean absolute error values of 0.79 (0.92), 15.75 μg/m3 (6.75 μg/m3) and 9.89 μg/m3 (4.53 μg/m3), respectively. Meanwhile, we find that surface visibility plays the dominant role in terms of the relative importance of variables in the XGBoost model, accounting for 39.3% of the overall importance. We then use meteorological and PM2.5 data in the year 2017 to assess the predictive capability of the model. Results showed that the XGBoost model is capable to accurately hindcast historical PM2.5 at monthly (R2 = 0.80, RMSE = 14.75 μg/m3), seasonal (R2 = 0.86, RMSE = 12.28 μg/m3), and annual (R2 = 0.81, RMSE = 10.10 μg/m3) mean levels. In general, the newly constructed virtual PM2.5 observation network based on high-density surface meteorological observations using the Extreme Gradient Boosting model shows great potential in reconstructing historical PM2.5 at ~1000 meteorological sites across China. It will be of benefit to filling gaps in AOD-based PM2.5 data, as well as to other environmental studies including epidemiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨殇完成签到 ,获得积分10
1秒前
充电宝应助allrubbish采纳,获得10
1秒前
雄i完成签到,获得积分10
5秒前
SciGPT应助从容书瑶采纳,获得10
5秒前
万能图书馆应助Sk采纳,获得10
5秒前
5秒前
咳欧克完成签到,获得积分20
6秒前
叁壹粑粑完成签到,获得积分10
7秒前
小蘑菇应助姜呱呱呱采纳,获得10
7秒前
7秒前
风收奇绩完成签到,获得积分10
8秒前
8秒前
zho发布了新的文献求助30
9秒前
cong完成签到,获得积分10
9秒前
芳芳子呀完成签到,获得积分10
12秒前
weiyu_u完成签到,获得积分10
12秒前
123发布了新的文献求助10
12秒前
roger应助柠曦采纳,获得10
14秒前
xjp完成签到,获得积分10
16秒前
17秒前
玲家傻妞完成签到 ,获得积分10
17秒前
小二郎应助Una采纳,获得10
18秒前
20秒前
bowler完成签到,获得积分10
20秒前
英姑应助坦率白山采纳,获得10
21秒前
xjp完成签到,获得积分10
22秒前
22秒前
李哥发布了新的文献求助10
22秒前
23秒前
四叶曦完成签到 ,获得积分10
23秒前
phw2333应助AA采纳,获得20
24秒前
bluesmile完成签到,获得积分10
25秒前
26秒前
团子完成签到,获得积分10
27秒前
Una发布了新的文献求助10
28秒前
30秒前
31秒前
31秒前
团子发布了新的文献求助10
33秒前
熊泰山完成签到 ,获得积分10
33秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165214
求助须知:如何正确求助?哪些是违规求助? 2816237
关于积分的说明 7911970
捐赠科研通 2475937
什么是DOI,文献DOI怎么找? 1318452
科研通“疑难数据库(出版商)”最低求助积分说明 632155
版权声明 602388