Using Multi-Temporal MODIS NDVI Data to Monitor Tea Status and Forecast Yield: A Case Study at Tanuyen, Laichau, Vietnam

归一化差异植被指数 环境科学 产量(工程) 线性回归 回归分析 遥感 降水 支持向量机 气象学 数学 统计 气候变化 地理 计算机科学 机器学习 生态学 材料科学 冶金 生物
作者
Phamchimai Phan,Nengcheng Chen,Lei Xu,Zeqiang Chen
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:12 (11): 1814-1814 被引量:27
标识
DOI:10.3390/rs12111814
摘要

Tea is a cash crop that improves the quality of life for people in the Tanuyen District of Laichau Province, Vietnam. Tea yield, however, has stagnated in recent years, due to changes in temperature, precipitation, the age of the tea bushes, and diseases. Developing an approach for monitoring tea bushes by remote sensing and Geographic Information Systems (GIS) might be a way to alleviate this problem. Using multi-temporal remote sensing data, the paper details an investigation of the changes in tea health and yield forecasting through the normalized difference vegetation index (NDVI). In this study, we used NDVI as a support tool to demonstrate the temporal and spatial changes in NDVI through the extract tea NDVI value and calculate the mean NDVI value. The results of the study showed that the minimum NDVI value was 0.42 during January 2013 and February 2015 and 2016. The maximum NDVI value was in August 2015 and June 2017. We indicate that the linear relationship between NDVI value and mean temperature was strong with R 2 = 0.79 Our results confirm that the combination of meteorological data and NDVI data can achieve a high performance of yield prediction. Three models to predict tea yield were conducted: support vector machine (SVM), random forest (RF), and the traditional linear regression model (TLRM). For period 2009 to 2018, the prediction tea yield by the RF model was the best with a R 2 = 0.73 , by SVM it was 0.66, and 0.57 with the TLRM. Three evaluation indicators were used to consider accuracy: the coefficient of determination ( R 2 ), root-mean-square error (RMSE), and percentage error of tea yield (PETY). The highest accuracy for the three models was in 2015 with a R 2 ≥ 0.87, RMSE < 50 kg/ha, and PETY less 3% error. In the other years, the prediction accuracy was higher in the SVM and RF models. Meanwhile, the RF algorithm was better than PETY (≤10%) and the root mean square error for this algorithm was significantly less (≤80 kg/ha). RMSE and PETY showed relatively good values in the TLRM model with a RMSE from 80 to 100 kg/ha and a PETY from 8 to 15%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助LiuShenglan采纳,获得10
1秒前
漂亮的不言完成签到 ,获得积分10
1秒前
1秒前
CodeCraft应助踏雪飞鸿采纳,获得10
2秒前
2秒前
WZQ发布了新的文献求助10
2秒前
赘婿应助研友_nVNBVn采纳,获得10
2秒前
完美世界应助漂亮幻莲采纳,获得10
2秒前
3秒前
传奇3应助niu采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
喻辰星完成签到,获得积分10
5秒前
等待的花卷完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
sxd发布了新的文献求助10
8秒前
慕青应助肥肥福气满满采纳,获得10
9秒前
CodeCraft应助江哥采纳,获得10
10秒前
fagfagsf发布了新的文献求助10
10秒前
CHINA_C13发布了新的文献求助10
11秒前
11秒前
科研搬砖发布了新的文献求助10
11秒前
超帅曼柔完成签到,获得积分10
11秒前
Nazca发布了新的文献求助50
12秒前
12秒前
13秒前
13秒前
忘崽子小拳头完成签到,获得积分10
13秒前
13秒前
勤恳的一斩完成签到,获得积分10
13秒前
李健应助尔尔采纳,获得10
14秒前
斯文Jun完成签到,获得积分10
14秒前
yltstt完成签到,获得积分10
14秒前
surain发布了新的文献求助20
14秒前
方强完成签到 ,获得积分20
14秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748456
求助须知:如何正确求助?哪些是违规求助? 3291468
关于积分的说明 10073184
捐赠科研通 3007264
什么是DOI,文献DOI怎么找? 1651526
邀请新用户注册赠送积分活动 786444
科研通“疑难数据库(出版商)”最低求助积分说明 751742