A Stackelberg Game Pricing Through Balancing Trilateral Profits in Big Data Market

斯塔克伯格竞赛 计算机科学 博弈论 大数据 数据建模 微观经济学 经济 数据库 操作系统
作者
Zheng Xiao,Dan He,Jiayi Du
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (16): 12658-12668 被引量:18
标识
DOI:10.1109/jiot.2020.3001010
摘要

With the popularity of the Internet of Things (IoT) and large-scale deployment of sensors, data have exploded. Big data is utilized to extract useful knowledge and information and served as data services to consumers. While most of the current researches in the field of big data services focus on developing and improving algorithms for data mining and information extraction, and rarely studies "big data" from an economic perspective. This article thus studies the pricing and profit maximization problems in big data markets from an economic perspective. First, a method of quantifying the value of data is proposed to study the utility of raw data. Then, we build an economic model of the data market, which consists of three parties: 1) data vendor; 2) service provider; and 3) service users. The data vendor gathers various raw data and sells them to the service provider. The raw data are further processed into data services by a service provider, who provides service subscriptions to users to obtain profits. The interactions among them are formulated as a Stackelberg game to maximize the profits of all participators. The existence and uniqueness of equilibria pricing strategies are proved. Finally, numerical results show that the participators of the data market can achieve the maximum profit through the proposed pricing mechanism and economic model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致的安荷完成签到,获得积分10
1秒前
ABin完成签到,获得积分10
1秒前
跳跃难胜发布了新的文献求助10
1秒前
阳光的虔纹完成签到 ,获得积分10
1秒前
2秒前
番茄爱喝粥完成签到,获得积分10
2秒前
CipherSage应助老王爱学习采纳,获得10
2秒前
Fa完成签到,获得积分10
2秒前
3秒前
kira完成签到,获得积分10
4秒前
舒服的茹嫣完成签到,获得积分20
4秒前
Stvn发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
明理的天蓝完成签到,获得积分10
6秒前
咳咳发布了新的文献求助10
6秒前
木叶研完成签到,获得积分10
6秒前
无花果应助通~采纳,获得10
6秒前
7秒前
8秒前
周助发布了新的文献求助10
8秒前
伯赏秋白完成签到,获得积分10
8秒前
慕青应助sunzhiyu233采纳,获得10
8秒前
Sherwin完成签到,获得积分10
8秒前
羽毛完成签到,获得积分20
9秒前
xiongjian发布了新的文献求助10
9秒前
一方通行完成签到 ,获得积分10
9秒前
9秒前
monster0101完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
Stvn完成签到,获得积分20
11秒前
核桃发布了新的文献求助10
11秒前
跳跃的太阳完成签到,获得积分10
12秒前
12秒前
enoot完成签到,获得积分10
12秒前
dalin完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740