Machine Learning in Aging: An Example of Developing Prediction Models for Serious Fall Injury in Older Adults

机器学习 随机森林 可解释性 决策树 人工智能 计算机科学 集成学习 预测建模 集合预报 决策树学习
作者
Jaime Lynn Speiser,Kathryn E. Callahan,Denise K. Houston,Jason Fanning,Thomas M. Gill,Jack M. Guralnik,Anne B. Newman,Marco Pahor,W. Jack Rejeski,Michael E. Miller
出处
期刊:The Journals of Gerontology [Oxford University Press]
卷期号:76 (4): 647-654 被引量:47
标识
DOI:10.1093/gerona/glaa138
摘要

Abstract Background Advances in computational algorithms and the availability of large datasets with clinically relevant characteristics provide an opportunity to develop machine learning prediction models to aid in diagnosis, prognosis, and treatment of older adults. Some studies have employed machine learning methods for prediction modeling, but skepticism of these methods remains due to lack of reproducibility and difficulty in understanding the complex algorithms that underlie models. We aim to provide an overview of two common machine learning methods: decision tree and random forest. We focus on these methods because they provide a high degree of interpretability. Method We discuss the underlying algorithms of decision tree and random forest methods and present a tutorial for developing prediction models for serious fall injury using data from the Lifestyle Interventions and Independence for Elders (LIFE) study. Results Decision tree is a machine learning method that produces a model resembling a flow chart. Random forest consists of a collection of many decision trees whose results are aggregated. In the tutorial example, we discuss evaluation metrics and interpretation for these models. Illustrated using data from the LIFE study, prediction models for serious fall injury were moderate at best (area under the receiver operating curve of 0.54 for decision tree and 0.66 for random forest). Conclusions Machine learning methods offer an alternative to traditional approaches for modeling outcomes in aging, but their use should be justified and output should be carefully described. Models should be assessed by clinical experts to ensure compatibility with clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
morii发布了新的文献求助10
刚刚
CXLGE发布了新的文献求助10
刚刚
3秒前
MrH发布了新的文献求助10
3秒前
科研通AI2S应助俊逸的代曼采纳,获得10
5秒前
林爷完成签到,获得积分10
5秒前
6秒前
斯文败类应助sweet采纳,获得10
6秒前
万能图书馆应助AAAaa采纳,获得10
6秒前
6秒前
柯幼萱发布了新的文献求助10
6秒前
冷静宛海完成签到,获得积分10
7秒前
7秒前
深情安青应助tiga采纳,获得10
8秒前
田様应助morii采纳,获得10
9秒前
mhy发布了新的文献求助10
11秒前
AAAaa完成签到,获得积分10
12秒前
duoyi完成签到,获得积分20
13秒前
14秒前
14秒前
wwl发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
17秒前
Li发布了新的文献求助10
18秒前
18秒前
mhy完成签到,获得积分10
18秒前
19秒前
刘家翔发布了新的文献求助10
19秒前
19秒前
内向秋寒完成签到,获得积分10
20秒前
20秒前
sweet发布了新的文献求助10
20秒前
柯幼萱完成签到,获得积分10
20秒前
qiuxiaoting发布了新的文献求助10
21秒前
善学以致用应助王来敏采纳,获得10
21秒前
22秒前
22秒前
22秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3178524
求助须知:如何正确求助?哪些是违规求助? 2829537
关于积分的说明 7971864
捐赠科研通 2490839
什么是DOI,文献DOI怎么找? 1328016
科研通“疑难数据库(出版商)”最低求助积分说明 635380
版权声明 602904