已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning in Aging: An Example of Developing Prediction Models for Serious Fall Injury in Older Adults

机器学习 随机森林 可解释性 决策树 人工智能 计算机科学 集成学习 预测建模 集合预报 决策树学习
作者
Jaime Lynn Speiser,Kathryn E. Callahan,Denise K. Houston,Jason Fanning,Thomas M. Gill,Jack M. Guralnik,Anne B. Newman,Marco Pahor,W. Jack Rejeski,Michael E. Miller
出处
期刊:The Journals of Gerontology [Oxford University Press]
卷期号:76 (4): 647-654 被引量:47
标识
DOI:10.1093/gerona/glaa138
摘要

Abstract Background Advances in computational algorithms and the availability of large datasets with clinically relevant characteristics provide an opportunity to develop machine learning prediction models to aid in diagnosis, prognosis, and treatment of older adults. Some studies have employed machine learning methods for prediction modeling, but skepticism of these methods remains due to lack of reproducibility and difficulty in understanding the complex algorithms that underlie models. We aim to provide an overview of two common machine learning methods: decision tree and random forest. We focus on these methods because they provide a high degree of interpretability. Method We discuss the underlying algorithms of decision tree and random forest methods and present a tutorial for developing prediction models for serious fall injury using data from the Lifestyle Interventions and Independence for Elders (LIFE) study. Results Decision tree is a machine learning method that produces a model resembling a flow chart. Random forest consists of a collection of many decision trees whose results are aggregated. In the tutorial example, we discuss evaluation metrics and interpretation for these models. Illustrated using data from the LIFE study, prediction models for serious fall injury were moderate at best (area under the receiver operating curve of 0.54 for decision tree and 0.66 for random forest). Conclusions Machine learning methods offer an alternative to traditional approaches for modeling outcomes in aging, but their use should be justified and output should be carefully described. Models should be assessed by clinical experts to ensure compatibility with clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晴雨天完成签到 ,获得积分10
2秒前
niuma发布了新的文献求助10
2秒前
斯文败类应助lxy采纳,获得10
2秒前
endocrine发布了新的文献求助10
3秒前
优秀不愁发布了新的文献求助10
4秒前
8秒前
9秒前
英俊的铭应助ceeray23采纳,获得20
9秒前
茉莉完成签到 ,获得积分10
10秒前
酷波er应助clove采纳,获得10
11秒前
信哥哥发布了新的文献求助10
11秒前
11秒前
橙橙橙橙发布了新的文献求助10
12秒前
15秒前
15秒前
Owen应助暮然采纳,获得10
16秒前
17秒前
科研小白发布了新的文献求助10
17秒前
18秒前
王仙人发布了新的文献求助10
19秒前
liu发布了新的文献求助10
20秒前
20秒前
zhang完成签到,获得积分10
21秒前
无花果应助科研小白采纳,获得10
21秒前
红豆盖饭发布了新的文献求助10
24秒前
24秒前
SCI完成签到,获得积分10
24秒前
25秒前
25秒前
25秒前
李健的小迷弟应助xkx采纳,获得10
27秒前
暮然发布了新的文献求助10
28秒前
贝尔发布了新的文献求助10
30秒前
橘猫ADD发布了新的文献求助10
30秒前
小马甲应助吕凯良采纳,获得10
30秒前
糖配坤完成签到 ,获得积分10
31秒前
呀呀呀完成签到,获得积分10
33秒前
33秒前
耶斯发布了新的文献求助10
33秒前
bruseli完成签到,获得积分20
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Atlas of the Rabbit Brain and Spinal Cord 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5018389
求助须知:如何正确求助?哪些是违规求助? 4257734
关于积分的说明 13269841
捐赠科研通 4062244
什么是DOI,文献DOI怎么找? 2221850
邀请新用户注册赠送积分活动 1231029
关于科研通互助平台的介绍 1153784