Machine Learning in Aging: An Example of Developing Prediction Models for Serious Fall Injury in Older Adults

机器学习 随机森林 可解释性 决策树 人工智能 计算机科学 集成学习 预测建模 集合预报 决策树学习
作者
Jaime Lynn Speiser,Kathryn E. Callahan,Denise K. Houston,Jason Fanning,Thomas M. Gill,Jack M. Guralnik,Anne B. Newman,Marco Pahor,W. Jack Rejeski,Michael E. Miller
出处
期刊:The Journals of Gerontology [Oxford University Press]
卷期号:76 (4): 647-654 被引量:47
标识
DOI:10.1093/gerona/glaa138
摘要

Abstract Background Advances in computational algorithms and the availability of large datasets with clinically relevant characteristics provide an opportunity to develop machine learning prediction models to aid in diagnosis, prognosis, and treatment of older adults. Some studies have employed machine learning methods for prediction modeling, but skepticism of these methods remains due to lack of reproducibility and difficulty in understanding the complex algorithms that underlie models. We aim to provide an overview of two common machine learning methods: decision tree and random forest. We focus on these methods because they provide a high degree of interpretability. Method We discuss the underlying algorithms of decision tree and random forest methods and present a tutorial for developing prediction models for serious fall injury using data from the Lifestyle Interventions and Independence for Elders (LIFE) study. Results Decision tree is a machine learning method that produces a model resembling a flow chart. Random forest consists of a collection of many decision trees whose results are aggregated. In the tutorial example, we discuss evaluation metrics and interpretation for these models. Illustrated using data from the LIFE study, prediction models for serious fall injury were moderate at best (area under the receiver operating curve of 0.54 for decision tree and 0.66 for random forest). Conclusions Machine learning methods offer an alternative to traditional approaches for modeling outcomes in aging, but their use should be justified and output should be carefully described. Models should be assessed by clinical experts to ensure compatibility with clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助通~采纳,获得30
刚刚
1秒前
Annie发布了新的文献求助10
1秒前
晨曦完成签到,获得积分10
2秒前
十一发布了新的文献求助10
2秒前
顾矜应助Peter采纳,获得30
3秒前
Ayanami完成签到,获得积分10
3秒前
英俊的铭应助ysl采纳,获得30
3秒前
酷波er应助范范采纳,获得10
3秒前
4秒前
Akim应助damian采纳,获得30
4秒前
4秒前
6秒前
番茄炒西红柿完成签到,获得积分10
7秒前
无限安蕾完成签到,获得积分10
7秒前
7秒前
飘逸蘑菇发布了新的文献求助10
8秒前
混沌完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
xg发布了新的文献求助10
10秒前
看看发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
Annie完成签到,获得积分10
12秒前
12秒前
通~发布了新的文献求助30
13秒前
13秒前
雨雾发布了新的文献求助10
14秒前
daiyapeng完成签到,获得积分10
14秒前
ivy应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
NN应助科研通管家采纳,获得10
15秒前
36456657应助科研通管家采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794