亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attribute-based structural damage identification by few-shot meta learning with inter-class knowledge transfer

计算机科学 人工智能 机器学习 集合(抽象数据类型) 学习迁移 过程(计算) 特征向量 特征(语言学) 鉴定(生物学) 数据挖掘 班级(哲学) 模式识别(心理学) 语言学 哲学 植物 生物 程序设计语言 操作系统
作者
Yang Xu,Yuequan Bao,Yufeng Zhang,Hui Li
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:20 (4): 1494-1517 被引量:57
标识
DOI:10.1177/1475921720921135
摘要

Image archives of multi-class structural damages can be collected by manual inspection and then used for structural damage identification. On one hand, conventional image-processing-based approaches rely on optimal designs of hand-crafted feature detectors and lack universal adaptability for various application cases; on the other hand, regular supervised learning techniques require complete damage types and sufficient training examples to establish a robust damage recognition model, which brings up a time-labor-consuming image collection process. To solve these problems, this study proposes a nested attribute-based few-shot meta learning paradigm for structural damage identification. First, an external few-shot meta learning module is established based on different classification tasks named as meta-batches to produce robust classifiers for new damage types, in which support and query subsets including partial damage types and a few examples are randomly sampled from the original image dataset. Second, an embedded internal attribute-based transfer learning model is trained by minimizing the l 2 -norm and angular losses of attribute representation vectors in an end-to-end manner, where damage attributes act as the common inter-class knowledge and are transferred from the source damage space of support set to the target damage space of query set. Finally, the proposed approach is validated on a real-world structural damage image dataset, which contains 1000 examples of 10 representative damage types in total. Results show the proposed approach produces an overall accuracy of 93.5% and an average area under the ROC curve of 0.96 for 10 damage types. The general equilibrium of average precision and recall indicates that the trained model is balanced to both positive and negative examples for each damage type. Compared with a regular supervised learning model by directly classifying input images with one-hot vector labels, the proposed approach generates higher accuracy and better robustness. Parameter study suggests the proposed paradigm enables to train a stable and reliable meta learning classification model that can perform well across a series of settings about the ratio between support and query subsets. Theoretical analysis is also performed to explain why meta learning surpasses regular supervised learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
13秒前
14秒前
彼岸花开发布了新的文献求助200
16秒前
Xenogenesis发布了新的文献求助10
38秒前
Xenogenesis完成签到,获得积分10
50秒前
今后应助夕阳醉了采纳,获得10
1分钟前
郗妫完成签到,获得积分10
1分钟前
1分钟前
夕阳醉了发布了新的文献求助10
1分钟前
魔笛的云宝完成签到 ,获得积分10
1分钟前
1分钟前
Song0558完成签到 ,获得积分20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
lzx应助科研通管家采纳,获得100
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
lzx应助科研通管家采纳,获得100
1分钟前
瑞瑞完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
张泽崇发布了新的文献求助10
3分钟前
3分钟前
吴嘉俊完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Jj7完成签到,获得积分10
3分钟前
4分钟前
SUnnnnn发布了新的文献求助10
4分钟前
SUnnnnn完成签到,获得积分20
4分钟前
krajicek完成签到,获得积分10
5分钟前
5分钟前
hgl完成签到,获得积分10
5分钟前
5分钟前
搜集达人应助科研通管家采纳,获得10
5分钟前
6分钟前
7分钟前
closer发布了新的文献求助10
7分钟前
张泽崇发布了新的文献求助10
7分钟前
8分钟前
自己发布了新的文献求助10
8分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965717
求助须知:如何正确求助?哪些是违规求助? 3510950
关于积分的说明 11155686
捐赠科研通 3245413
什么是DOI,文献DOI怎么找? 1792876
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804216