Attribute-based structural damage identification by few-shot meta learning with inter-class knowledge transfer

计算机科学 人工智能 机器学习 集合(抽象数据类型) 学习迁移 过程(计算) 特征向量 特征(语言学) 鉴定(生物学) 数据挖掘 班级(哲学) 模式识别(心理学) 语言学 哲学 植物 生物 程序设计语言 操作系统
作者
Yang Xu,Yuequan Bao,Yufeng Zhang,Hui Li
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:20 (4): 1494-1517 被引量:57
标识
DOI:10.1177/1475921720921135
摘要

Image archives of multi-class structural damages can be collected by manual inspection and then used for structural damage identification. On one hand, conventional image-processing-based approaches rely on optimal designs of hand-crafted feature detectors and lack universal adaptability for various application cases; on the other hand, regular supervised learning techniques require complete damage types and sufficient training examples to establish a robust damage recognition model, which brings up a time-labor-consuming image collection process. To solve these problems, this study proposes a nested attribute-based few-shot meta learning paradigm for structural damage identification. First, an external few-shot meta learning module is established based on different classification tasks named as meta-batches to produce robust classifiers for new damage types, in which support and query subsets including partial damage types and a few examples are randomly sampled from the original image dataset. Second, an embedded internal attribute-based transfer learning model is trained by minimizing the l 2 -norm and angular losses of attribute representation vectors in an end-to-end manner, where damage attributes act as the common inter-class knowledge and are transferred from the source damage space of support set to the target damage space of query set. Finally, the proposed approach is validated on a real-world structural damage image dataset, which contains 1000 examples of 10 representative damage types in total. Results show the proposed approach produces an overall accuracy of 93.5% and an average area under the ROC curve of 0.96 for 10 damage types. The general equilibrium of average precision and recall indicates that the trained model is balanced to both positive and negative examples for each damage type. Compared with a regular supervised learning model by directly classifying input images with one-hot vector labels, the proposed approach generates higher accuracy and better robustness. Parameter study suggests the proposed paradigm enables to train a stable and reliable meta learning classification model that can perform well across a series of settings about the ratio between support and query subsets. Theoretical analysis is also performed to explain why meta learning surpasses regular supervised learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15503116087发布了新的文献求助10
刚刚
大个应助初之采纳,获得10
1秒前
te发布了新的文献求助10
1秒前
边港洋完成签到,获得积分10
3秒前
3秒前
凤羽发布了新的文献求助10
4秒前
灵巧听露发布了新的文献求助10
4秒前
可爱的函函应助猫猫无敌采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
8秒前
爆米花应助刁弘睿采纳,获得10
8秒前
8秒前
8秒前
缥缈海云完成签到,获得积分10
8秒前
9秒前
斯文败类应助沙场秋点兵采纳,获得10
10秒前
123完成签到,获得积分10
10秒前
11秒前
无辜问玉发布了新的文献求助10
11秒前
11秒前
12秒前
谨慎乐安发布了新的文献求助10
12秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
缥缈海云发布了新的文献求助10
15秒前
mylaodao发布了新的文献求助10
15秒前
16秒前
chen完成签到,获得积分10
17秒前
拾贰月发布了新的文献求助10
17秒前
俊杰完成签到,获得积分10
18秒前
阿菜完成签到,获得积分10
18秒前
wanghao完成签到,获得积分20
18秒前
善学以致用应助songjiatian采纳,获得10
19秒前
20秒前
20秒前
善学以致用应助追忆淮采纳,获得10
21秒前
Hello应助靓丽凝海采纳,获得10
21秒前
21秒前
毛笑冉完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425