重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Attribute-based structural damage identification by few-shot meta learning with inter-class knowledge transfer

计算机科学 人工智能 机器学习 集合(抽象数据类型) 学习迁移 过程(计算) 特征向量 特征(语言学) 鉴定(生物学) 数据挖掘 班级(哲学) 模式识别(心理学) 语言学 哲学 植物 生物 程序设计语言 操作系统
作者
Yang Xu,Yuequan Bao,Yufeng Zhang,Hui Li
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:20 (4): 1494-1517 被引量:57
标识
DOI:10.1177/1475921720921135
摘要

Image archives of multi-class structural damages can be collected by manual inspection and then used for structural damage identification. On one hand, conventional image-processing-based approaches rely on optimal designs of hand-crafted feature detectors and lack universal adaptability for various application cases; on the other hand, regular supervised learning techniques require complete damage types and sufficient training examples to establish a robust damage recognition model, which brings up a time-labor-consuming image collection process. To solve these problems, this study proposes a nested attribute-based few-shot meta learning paradigm for structural damage identification. First, an external few-shot meta learning module is established based on different classification tasks named as meta-batches to produce robust classifiers for new damage types, in which support and query subsets including partial damage types and a few examples are randomly sampled from the original image dataset. Second, an embedded internal attribute-based transfer learning model is trained by minimizing the l 2 -norm and angular losses of attribute representation vectors in an end-to-end manner, where damage attributes act as the common inter-class knowledge and are transferred from the source damage space of support set to the target damage space of query set. Finally, the proposed approach is validated on a real-world structural damage image dataset, which contains 1000 examples of 10 representative damage types in total. Results show the proposed approach produces an overall accuracy of 93.5% and an average area under the ROC curve of 0.96 for 10 damage types. The general equilibrium of average precision and recall indicates that the trained model is balanced to both positive and negative examples for each damage type. Compared with a regular supervised learning model by directly classifying input images with one-hot vector labels, the proposed approach generates higher accuracy and better robustness. Parameter study suggests the proposed paradigm enables to train a stable and reliable meta learning classification model that can perform well across a series of settings about the ratio between support and query subsets. Theoretical analysis is also performed to explain why meta learning surpasses regular supervised learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小白发布了新的文献求助10
刚刚
1秒前
Jasper应助殷楷霖采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
大意的雪珍完成签到,获得积分10
3秒前
YUAN发布了新的文献求助10
3秒前
颜倾完成签到,获得积分10
4秒前
科研通AI6应助徐徐采纳,获得10
4秒前
qaqa发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
小蘑菇应助小张采纳,获得10
7秒前
丘比特应助treeman采纳,获得10
7秒前
7秒前
kk完成签到 ,获得积分10
8秒前
9秒前
风清扬发布了新的文献求助10
9秒前
Jasper应助Dr.Yang采纳,获得10
11秒前
木一发布了新的文献求助10
11秒前
12秒前
qaqa完成签到,获得积分20
13秒前
13秒前
殷楷霖发布了新的文献求助10
14秒前
彭于晏应助优秀静珊采纳,获得10
16秒前
16秒前
16秒前
科研通AI6应助风清扬采纳,获得30
17秒前
兆渊完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
zz的奇妙冒险完成签到,获得积分10
20秒前
Yun完成签到 ,获得积分10
20秒前
21秒前
22秒前
浮游应助孟琪富采纳,获得10
22秒前
WWWWWll发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467978
求助须知:如何正确求助?哪些是违规求助? 4571531
关于积分的说明 14330478
捐赠科研通 4498059
什么是DOI,文献DOI怎么找? 2464295
邀请新用户注册赠送积分活动 1453038
关于科研通互助平台的介绍 1427737