Attribute-based structural damage identification by few-shot meta learning with inter-class knowledge transfer

计算机科学 人工智能 机器学习 集合(抽象数据类型) 学习迁移 过程(计算) 特征向量 特征(语言学) 鉴定(生物学) 数据挖掘 班级(哲学) 模式识别(心理学) 哲学 操作系统 生物 程序设计语言 植物 语言学
作者
Yang Xu,Yuequan Bao,Yufeng Zhang,Hui Li
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:20 (4): 1494-1517 被引量:52
标识
DOI:10.1177/1475921720921135
摘要

Image archives of multi-class structural damages can be collected by manual inspection and then used for structural damage identification. On one hand, conventional image-processing-based approaches rely on optimal designs of hand-crafted feature detectors and lack universal adaptability for various application cases; on the other hand, regular supervised learning techniques require complete damage types and sufficient training examples to establish a robust damage recognition model, which brings up a time-labor-consuming image collection process. To solve these problems, this study proposes a nested attribute-based few-shot meta learning paradigm for structural damage identification. First, an external few-shot meta learning module is established based on different classification tasks named as meta-batches to produce robust classifiers for new damage types, in which support and query subsets including partial damage types and a few examples are randomly sampled from the original image dataset. Second, an embedded internal attribute-based transfer learning model is trained by minimizing the l 2 -norm and angular losses of attribute representation vectors in an end-to-end manner, where damage attributes act as the common inter-class knowledge and are transferred from the source damage space of support set to the target damage space of query set. Finally, the proposed approach is validated on a real-world structural damage image dataset, which contains 1000 examples of 10 representative damage types in total. Results show the proposed approach produces an overall accuracy of 93.5% and an average area under the ROC curve of 0.96 for 10 damage types. The general equilibrium of average precision and recall indicates that the trained model is balanced to both positive and negative examples for each damage type. Compared with a regular supervised learning model by directly classifying input images with one-hot vector labels, the proposed approach generates higher accuracy and better robustness. Parameter study suggests the proposed paradigm enables to train a stable and reliable meta learning classification model that can perform well across a series of settings about the ratio between support and query subsets. Theoretical analysis is also performed to explain why meta learning surpasses regular supervised learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz关注了科研通微信公众号
1秒前
1秒前
搜集达人应助史莱莱莱姆采纳,获得10
1秒前
2秒前
傻傻的宛白完成签到,获得积分10
2秒前
开放幻丝完成签到 ,获得积分10
2秒前
程志杰应助暖部采纳,获得10
3秒前
6秒前
ttt完成签到,获得积分10
6秒前
Cindy应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助YBOH采纳,获得10
7秒前
Cindy应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
Cindy应助科研通管家采纳,获得10
7秒前
顺顺尼发布了新的文献求助10
7秒前
爱静静应助科研通管家采纳,获得10
7秒前
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
7秒前
Cindy应助科研通管家采纳,获得10
7秒前
爱静静应助科研通管家采纳,获得10
7秒前
yizhiGao应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
爱静静应助科研通管家采纳,获得10
8秒前
隐形曼青应助段盼兰采纳,获得30
9秒前
11秒前
11秒前
月月发布了新的文献求助10
12秒前
活力的念柏完成签到,获得积分10
12秒前
Faith完成签到,获得积分10
12秒前
14秒前
15秒前
pangzh完成签到,获得积分10
16秒前
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260808
求助须知:如何正确求助?哪些是违规求助? 2901913
关于积分的说明 8318098
捐赠科研通 2571665
什么是DOI,文献DOI怎么找? 1397111
科研通“疑难数据库(出版商)”最低求助积分说明 653655
邀请新用户注册赠送积分活动 632178