Attribute-based structural damage identification by few-shot meta learning with inter-class knowledge transfer

计算机科学 人工智能 机器学习 集合(抽象数据类型) 学习迁移 过程(计算) 特征向量 特征(语言学) 鉴定(生物学) 数据挖掘 班级(哲学) 模式识别(心理学) 语言学 哲学 植物 生物 程序设计语言 操作系统
作者
Yang Xu,Yuequan Bao,Yufeng Zhang,Hui Li
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:20 (4): 1494-1517 被引量:57
标识
DOI:10.1177/1475921720921135
摘要

Image archives of multi-class structural damages can be collected by manual inspection and then used for structural damage identification. On one hand, conventional image-processing-based approaches rely on optimal designs of hand-crafted feature detectors and lack universal adaptability for various application cases; on the other hand, regular supervised learning techniques require complete damage types and sufficient training examples to establish a robust damage recognition model, which brings up a time-labor-consuming image collection process. To solve these problems, this study proposes a nested attribute-based few-shot meta learning paradigm for structural damage identification. First, an external few-shot meta learning module is established based on different classification tasks named as meta-batches to produce robust classifiers for new damage types, in which support and query subsets including partial damage types and a few examples are randomly sampled from the original image dataset. Second, an embedded internal attribute-based transfer learning model is trained by minimizing the l 2 -norm and angular losses of attribute representation vectors in an end-to-end manner, where damage attributes act as the common inter-class knowledge and are transferred from the source damage space of support set to the target damage space of query set. Finally, the proposed approach is validated on a real-world structural damage image dataset, which contains 1000 examples of 10 representative damage types in total. Results show the proposed approach produces an overall accuracy of 93.5% and an average area under the ROC curve of 0.96 for 10 damage types. The general equilibrium of average precision and recall indicates that the trained model is balanced to both positive and negative examples for each damage type. Compared with a regular supervised learning model by directly classifying input images with one-hot vector labels, the proposed approach generates higher accuracy and better robustness. Parameter study suggests the proposed paradigm enables to train a stable and reliable meta learning classification model that can perform well across a series of settings about the ratio between support and query subsets. Theoretical analysis is also performed to explain why meta learning surpasses regular supervised learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
star应助危机的雍采纳,获得10
1秒前
1秒前
xutingfeng发布了新的文献求助10
1秒前
小巧的中蓝完成签到 ,获得积分10
2秒前
zzzzzzzzzzzz完成签到,获得积分10
2秒前
领导范儿应助生动路人采纳,获得10
2秒前
春水梨关注了科研通微信公众号
3秒前
5秒前
斯文败类应助布小丁采纳,获得10
5秒前
Lucas应助ccc采纳,获得10
5秒前
6秒前
liiy完成签到,获得积分10
6秒前
8秒前
俭朴的雨梅完成签到,获得积分10
9秒前
10秒前
桐桐应助危机的雍采纳,获得30
10秒前
11秒前
12秒前
苦行僧完成签到,获得积分10
12秒前
12秒前
12秒前
情怀应助无情山水采纳,获得10
12秒前
12秒前
科研小白发布了新的文献求助10
13秒前
布丁完成签到,获得积分10
13秒前
麕麕完成签到 ,获得积分10
14秒前
Jessie发布了新的文献求助10
15秒前
如初发布了新的文献求助10
15秒前
16秒前
狄远山完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
绿端发布了新的文献求助10
16秒前
HJJ完成签到 ,获得积分10
17秒前
田様应助jjhh采纳,获得10
17秒前
沧海泪发布了新的文献求助20
17秒前
小明应助我爱看文献采纳,获得10
18秒前
666发布了新的文献求助10
22秒前
梦白鸽发布了新的文献求助20
22秒前
小马甲应助钟馗采纳,获得10
25秒前
大理学子发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911582
求助须知:如何正确求助?哪些是违规求助? 4187043
关于积分的说明 13002331
捐赠科研通 3954873
什么是DOI,文献DOI怎么找? 2168482
邀请新用户注册赠送积分活动 1186950
关于科研通互助平台的介绍 1094256