生物
细胞命运测定
不对称细胞分裂
细胞分裂
警卫室
细胞生物学
电池极性
转录因子
细胞
拟南芥
细胞分化
远臂足
遗传学
突变体
基因
基因组
作者
Hongliang Wang,Siyi Guo,Qiao Xin,Jianfei Guo,Li Zuliang,Yusen Zhou,Shenglong Bai,Zhiyong Gao,Daojie Wang,Pengcheng Wang,David W. Galbraith
出处
期刊:PLOS Genetics
日期:2019-08-29
卷期号:15 (8): e1008377-e1008377
被引量:32
标识
DOI:10.1371/journal.pgen.1008377
摘要
Intercellular communication in adjacent cell layers determines cell fate and polarity, thus orchestrating tissue specification and differentiation. Here we use the maize stomatal apparatus as a model to investigate cell fate determination. Mutations in ZmBZU2 (bizui2, bzu2) confer a complete absence of subsidiary cells (SCs) and normal guard cells (GCs), leading to failure of formation of mature stomatal complexes. Nuclear polarization and actin accumulation at the interface between subsidiary mother cells (SMCs) and guard mother cells (GMCs), an essential pre-requisite for asymmetric cell division, did not occur in Zmbzu2 mutants. ZmBZU2 encodes a basic helix-loop-helix (bHLH) transcription factor, which is an ortholog of AtMUTE in Arabidopsis (BZU2/ZmMUTE). We found that a number of genes implicated in stomatal development are transcriptionally regulated by BZU2/ZmMUTE. In particular, BZU2/ZmMUTE directly binds to the promoters of PAN1 and PAN2, two early regulators of protodermal cell fate and SMC polarization, consistent with the low levels of transcription of these genes observed in bzu2-1 mutants. BZU2/ZmMUTE has the cell-to-cell mobility characteristic similar to that of BdMUTE in Brachypodium distachyon. Unexpectedly, BZU2/ZmMUTE is expressed in GMC from the asymmetric division stage to the GMC division stage, and especially in the SMC establishment stage. Taken together, these data imply that BZU2/ZmMUTE is required for early events in SMC polarization and differentiation as well as for the last symmetrical division of GMCs to produce the two GCs, and is a master determinant of the cell fate of its neighbors through cell-to-cell communication.
科研通智能强力驱动
Strongly Powered by AbleSci AI