Non-invasive imaging prediction of tumor hypoxia: A novel developed and externally validated CT and FDG-PET-based radiomic signatures

医学 无线电技术 缺氧(环境) 置信区间 肿瘤缺氧 核医学 放射科 放射治疗 内科学 氧气 化学 有机化学
作者
Sebastian Sanduleanu,Arthur Jochems,Taman Upadhaya,Aniek J.G. Even,Ralph T. H. Leijenaar,Frank J. W. M. Dankers,Remy Klaassen,Henry C. Woodruff,Mathieu Hatt,Hans J.A.M. Kaanders,Olga Hamming‐Vrieze,Hanneke W.M. van Laarhoven,R. Subramiam,Shao Hui Huang,Brian O’Sullivan,Scott V. Bratman,Ludwig J. Dubois,Razvan L. Miclea,Dario Di Perri,Xavier Geets,M. Crispin Ortuzar,Aditya Apte,Joseph O. Deasy,Jung Hun Oh,Nancy Y. Lee,John L. Humm,Heiko Schöder,Dirk De Ruysscher,Frank Hoebers,Philippe Lambin
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:153: 97-105 被引量:24
标识
DOI:10.1016/j.radonc.2020.10.016
摘要

Tumor hypoxia increases resistance to radiotherapy and systemic therapy. Our aim was to develop and validate a disease-agnostic and disease-specific CT (+FDG-PET) based radiomics hypoxia classification signature.A total of 808 patients with imaging data were included: N = 100 training/N = 183 external validation cases for a disease-agnostic CT hypoxia classification signature, N = 76 training/N = 39 validation cases for the H&N CT signature and N = 62 training/N = 36 validation cases for the Lung CT signature. The primary gross tumor volumes (GTV) were manually defined by experts on CT. In order to dichotomize between hypoxic/well-oxygenated tumors a threshold of 20% was used for the [18F]-HX4-derived hypoxic fractions (HF). A random forest (RF)-based machine-learning classifier/regressor was trained to classify patients as hypoxia-positive/ negative based on radiomic features.A 11 feature "disease-agnostic CT model" reached AUC's of respectively 0.78 (95% confidence interval [CI], 0.62-0.94), 0.82 (95% CI, 0.67-0.96) and 0.78 (95% CI, 0.67-0.89) in three external validation datasets. A "disease-agnostic FDG-PET model" reached an AUC of 0.73 (0.95% CI, 0.49-0.97) in validation by combining 5 features. The highest "lung-specific CT model" reached an AUC of 0.80 (0.95% CI, 0.65-0.95) in validation with 4 CT features, while the "H&N-specific CT model" reached an AUC of 0.84 (0.95% CI, 0.64-1.00) in validation with 15 CT features. A tumor volume-alone model was unable to significantly classify patients as hypoxia-positive/ negative. A significant survival split (P = 0.037) was found between CT-classified hypoxia strata in an external H&N cohort (n = 517), while 117 significant hypoxia gene-CT signature feature associations were found in an external lung cohort (n = 80).The disease-specific radiomics signatures perform better than the disease agnostic ones. By identifying hypoxic patients our signatures have the potential to enrich interventional hypoxia-targeting trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
似水流年完成签到 ,获得积分10
1秒前
binshier完成签到,获得积分10
7秒前
10秒前
Eclipse12138完成签到,获得积分10
11秒前
东山寺下学习的人完成签到,获得积分10
14秒前
lx关闭了lx文献求助
17秒前
LJX完成签到 ,获得积分10
21秒前
lx完成签到,获得积分20
23秒前
成就的书包完成签到,获得积分10
28秒前
lx发布了新的文献求助630
28秒前
Celeste应助爱听歌的含烟采纳,获得10
29秒前
系小小鱼啊完成签到 ,获得积分10
31秒前
31秒前
蘅皋发布了新的文献求助10
37秒前
彭洪凯完成签到,获得积分10
38秒前
39秒前
吹梦西洲完成签到,获得积分10
42秒前
Stuki完成签到,获得积分10
42秒前
是真的完成签到 ,获得积分10
44秒前
谨慎板栗发布了新的文献求助20
46秒前
ding应助蘅皋采纳,获得10
47秒前
科研路上互帮互助,共同进步完成签到 ,获得积分10
52秒前
文献狗完成签到,获得积分10
59秒前
1分钟前
养猪大户完成签到 ,获得积分10
1分钟前
呆小婷儿发布了新的文献求助10
1分钟前
1分钟前
1分钟前
federish完成签到 ,获得积分10
1分钟前
YIYI发布了新的文献求助10
1分钟前
ylky完成签到 ,获得积分10
1分钟前
程若男发布了新的文献求助10
1分钟前
1111完成签到,获得积分10
1分钟前
木木完成签到 ,获得积分10
1分钟前
YIYI完成签到,获得积分10
1分钟前
ps2666完成签到 ,获得积分10
1分钟前
1分钟前
Adam完成签到 ,获得积分10
1分钟前
子车定帮完成签到,获得积分10
1分钟前
苹果白凡完成签到,获得积分10
1分钟前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378385
求助须知:如何正确求助?哪些是违规求助? 4502816
关于积分的说明 14014575
捐赠科研通 4411403
什么是DOI,文献DOI怎么找? 2423255
邀请新用户注册赠送积分活动 1416172
关于科研通互助平台的介绍 1393591