Non-invasive imaging prediction of tumor hypoxia: A novel developed and externally validated CT and FDG-PET-based radiomic signatures

医学 无线电技术 缺氧(环境) 置信区间 肿瘤缺氧 核医学 放射科 放射治疗 内科学 氧气 有机化学 化学
作者
Sebastian Sanduleanu,Arthur Jochems,Taman Upadhaya,Aniek J.G. Even,Ralph T. H. Leijenaar,Frank J. W. M. Dankers,Remy Klaassen,Henry C. Woodruff,Mathieu Hatt,Hans J.A.M. Kaanders,Olga Hamming‐Vrieze,Hanneke W.M. van Laarhoven,R. Subramiam,Shao Hui Huang,Brian O’Sullivan,Scott V. Bratman,Ludwig J. Dubois,Razvan L. Miclea,Dario Di Perri,Xavier Geets,M. Crispin Ortuzar,Aditya Apte,Joseph O. Deasy,Jung Hun Oh,Nancy Y. Lee,John L. Humm,Heiko Schöder,Dirk De Ruysscher,Frank Hoebers,Philippe Lambin
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:153: 97-105 被引量:24
标识
DOI:10.1016/j.radonc.2020.10.016
摘要

Tumor hypoxia increases resistance to radiotherapy and systemic therapy. Our aim was to develop and validate a disease-agnostic and disease-specific CT (+FDG-PET) based radiomics hypoxia classification signature.A total of 808 patients with imaging data were included: N = 100 training/N = 183 external validation cases for a disease-agnostic CT hypoxia classification signature, N = 76 training/N = 39 validation cases for the H&N CT signature and N = 62 training/N = 36 validation cases for the Lung CT signature. The primary gross tumor volumes (GTV) were manually defined by experts on CT. In order to dichotomize between hypoxic/well-oxygenated tumors a threshold of 20% was used for the [18F]-HX4-derived hypoxic fractions (HF). A random forest (RF)-based machine-learning classifier/regressor was trained to classify patients as hypoxia-positive/ negative based on radiomic features.A 11 feature "disease-agnostic CT model" reached AUC's of respectively 0.78 (95% confidence interval [CI], 0.62-0.94), 0.82 (95% CI, 0.67-0.96) and 0.78 (95% CI, 0.67-0.89) in three external validation datasets. A "disease-agnostic FDG-PET model" reached an AUC of 0.73 (0.95% CI, 0.49-0.97) in validation by combining 5 features. The highest "lung-specific CT model" reached an AUC of 0.80 (0.95% CI, 0.65-0.95) in validation with 4 CT features, while the "H&N-specific CT model" reached an AUC of 0.84 (0.95% CI, 0.64-1.00) in validation with 15 CT features. A tumor volume-alone model was unable to significantly classify patients as hypoxia-positive/ negative. A significant survival split (P = 0.037) was found between CT-classified hypoxia strata in an external H&N cohort (n = 517), while 117 significant hypoxia gene-CT signature feature associations were found in an external lung cohort (n = 80).The disease-specific radiomics signatures perform better than the disease agnostic ones. By identifying hypoxic patients our signatures have the potential to enrich interventional hypoxia-targeting trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七发布了新的文献求助10
刚刚
Diss发布了新的文献求助30
1秒前
大力的猕猴桃完成签到,获得积分10
2秒前
2秒前
林小不脏发布了新的文献求助10
2秒前
guo发布了新的文献求助10
3秒前
baiweizi发布了新的文献求助10
3秒前
洋甘菊完成签到,获得积分10
3秒前
紫苏桃子姜完成签到,获得积分10
3秒前
tangshijun发布了新的文献求助10
3秒前
3秒前
川上富江完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
费乐巧完成签到,获得积分10
6秒前
爆米花应助WWW采纳,获得10
6秒前
GG完成签到,获得积分10
6秒前
6秒前
6秒前
芦荟板蓝根完成签到,获得积分10
7秒前
ysss0831完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
搜集达人应助yKkkkkk采纳,获得10
8秒前
8秒前
刘晏均发布了新的文献求助10
8秒前
李浩能发布了新的文献求助10
9秒前
Hello应助细心的雁玉采纳,获得10
10秒前
狂野的眼神完成签到,获得积分10
10秒前
10秒前
JamesPei应助zqx采纳,获得50
10秒前
麻果发布了新的文献求助40
10秒前
bxg发布了新的文献求助10
11秒前
11秒前
XM完成签到 ,获得积分10
11秒前
淡淡代玉发布了新的文献求助10
12秒前
lh完成签到,获得积分10
12秒前
CipherSage应助落后的怀梦采纳,获得10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974559
求助须知:如何正确求助?哪些是违规求助? 3518949
关于积分的说明 11196503
捐赠科研通 3255066
什么是DOI,文献DOI怎么找? 1797673
邀请新用户注册赠送积分活动 877076
科研通“疑难数据库(出版商)”最低求助积分说明 806130