Non-invasive imaging prediction of tumor hypoxia: A novel developed and externally validated CT and FDG-PET-based radiomic signatures

医学 无线电技术 缺氧(环境) 置信区间 肿瘤缺氧 核医学 放射科 放射治疗 内科学 氧气 有机化学 化学
作者
Sebastian Sanduleanu,Arthur Jochems,Taman Upadhaya,Aniek J.G. Even,Ralph T. H. Leijenaar,Frank J. W. M. Dankers,Remy Klaassen,Henry C. Woodruff,Mathieu Hatt,Hans J.A.M. Kaanders,Olga Hamming‐Vrieze,Hanneke W.M. van Laarhoven,R. Subramiam,Shao Hui Huang,Brian O’Sullivan,Scott V. Bratman,Ludwig J. Dubois,Razvan L. Miclea,Dario Di Perri,Xavier Geets,M. Crispin Ortuzar,Aditya Apte,Joseph O. Deasy,Jung Hun Oh,Nancy Y. Lee,John L. Humm,Heiko Schöder,Dirk De Ruysscher,Frank Hoebers,Philippe Lambin
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:153: 97-105 被引量:24
标识
DOI:10.1016/j.radonc.2020.10.016
摘要

Tumor hypoxia increases resistance to radiotherapy and systemic therapy. Our aim was to develop and validate a disease-agnostic and disease-specific CT (+FDG-PET) based radiomics hypoxia classification signature.A total of 808 patients with imaging data were included: N = 100 training/N = 183 external validation cases for a disease-agnostic CT hypoxia classification signature, N = 76 training/N = 39 validation cases for the H&N CT signature and N = 62 training/N = 36 validation cases for the Lung CT signature. The primary gross tumor volumes (GTV) were manually defined by experts on CT. In order to dichotomize between hypoxic/well-oxygenated tumors a threshold of 20% was used for the [18F]-HX4-derived hypoxic fractions (HF). A random forest (RF)-based machine-learning classifier/regressor was trained to classify patients as hypoxia-positive/ negative based on radiomic features.A 11 feature "disease-agnostic CT model" reached AUC's of respectively 0.78 (95% confidence interval [CI], 0.62-0.94), 0.82 (95% CI, 0.67-0.96) and 0.78 (95% CI, 0.67-0.89) in three external validation datasets. A "disease-agnostic FDG-PET model" reached an AUC of 0.73 (0.95% CI, 0.49-0.97) in validation by combining 5 features. The highest "lung-specific CT model" reached an AUC of 0.80 (0.95% CI, 0.65-0.95) in validation with 4 CT features, while the "H&N-specific CT model" reached an AUC of 0.84 (0.95% CI, 0.64-1.00) in validation with 15 CT features. A tumor volume-alone model was unable to significantly classify patients as hypoxia-positive/ negative. A significant survival split (P = 0.037) was found between CT-classified hypoxia strata in an external H&N cohort (n = 517), while 117 significant hypoxia gene-CT signature feature associations were found in an external lung cohort (n = 80).The disease-specific radiomics signatures perform better than the disease agnostic ones. By identifying hypoxic patients our signatures have the potential to enrich interventional hypoxia-targeting trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天开心完成签到,获得积分10
刚刚
刚刚
2秒前
2秒前
4秒前
7秒前
zqingxia发布了新的文献求助10
7秒前
深情安青应助o30采纳,获得10
8秒前
9秒前
烟花应助眸染瞳鸢采纳,获得10
11秒前
852应助windsky采纳,获得10
11秒前
Eliza_Yang完成签到,获得积分10
12秒前
12秒前
李健应助大佬采纳,获得10
14秒前
14秒前
14秒前
脑洞疼应助DD采纳,获得10
14秒前
四叶草发布了新的文献求助10
17秒前
传奇3应助勤劳的谷蓝采纳,获得10
18秒前
让我睡完成签到,获得积分10
18秒前
19秒前
夹谷蕈发布了新的文献求助10
19秒前
20秒前
20秒前
阿航完成签到,获得积分10
20秒前
萧水白应助RJ_W_HT采纳,获得20
21秒前
22秒前
Eliza_Yang发布了新的文献求助20
23秒前
23秒前
jooo发布了新的文献求助10
24秒前
o30发布了新的文献求助10
24秒前
EROIL发布了新的文献求助10
25秒前
美丽的之双完成签到,获得积分10
28秒前
斯蒂芬发布了新的文献求助10
30秒前
领导范儿应助姜千万采纳,获得10
31秒前
Owen应助庄默羽采纳,获得10
32秒前
Akim应助夹谷蕈采纳,获得10
32秒前
35秒前
36秒前
脑洞疼应助ZBY采纳,获得10
37秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334044
求助须知:如何正确求助?哪些是违规求助? 2963392
关于积分的说明 8609502
捐赠科研通 2642365
什么是DOI,文献DOI怎么找? 1446599
科研通“疑难数据库(出版商)”最低求助积分说明 670341
邀请新用户注册赠送积分活动 658450