清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A statistically based fault detection and diagnosis approach for non-residential building water distribution systems

故障检测与隔离 供水 主成分分析 断层(地质) 支持向量机 人工神经网络 缺水 数据挖掘 可靠性工程 计算机科学 水资源 工程类 机器学习 人工智能 环境工程 地质学 生物 地震学 执行机构 生态学
作者
Hafiz Hashim,Paraic C. Ryan,Eoghan Clifford
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:46: 101187-101187 被引量:38
标识
DOI:10.1016/j.aei.2020.101187
摘要

Large non-residential buildings can contain complex and often inefficient water distribution systems. As requirements for water increase due to water scarcity and industrialization, it has become increasingly important to effectively detect and diagnose faults in water distribution systems in large buildings. In many cases, if water supply is not impacted, faults in water distribution systems can go unnoticed. This can lead to unnecessary increases in water usage and associated energy due to pumping, treating, and heating water. The majority of fault detection and diagnosis studies in the water sector are limited to municipal water supply and leakage detection. The application of detection and diagnosis for faults in building water networks remains largely unexplored and the ability to identify and distinguish between routine and non-routine water usage at this scale remains a challenge. This study using case-study data, presents the application of principal component analysis and a multi-class support vector machine to detect and classify faults for non-residential building water networks. In the absence of a process model (which is typical for such water distribution systems), principal component analysis is proposed as a data-driven fault detection technique for building water distribution systems for the first time herein. Hotelling T2-statistics and Q-statistics were employed to detect abnormality within incoming data, and a multi-class support vector machine was trained for fault classification. Despite the relatively limited training data available from the case-study (which would reflect the situation in many buildings), meaningful faults were detected, and the technique proved successful in discriminating between various types of faults in the water distribution system. The effectiveness of the proposed approach is compared to a univariate threshold technique by comparison of their respective performance in the detection of faults that occurred in the case-study site. The results demonstrate the promising capabilities of the proposed fault detection and diagnosis approach. Such a strategy could provide a robust methodology that can be applied to buildings to reduce inefficient water use, reducing their life-cycle carbon footprint.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHM完成签到,获得积分10
10秒前
简单幸福完成签到 ,获得积分10
10秒前
科研通AI2S应助帮帮我好吗采纳,获得10
21秒前
谭凯文完成签到 ,获得积分10
35秒前
小猴子完成签到 ,获得积分10
39秒前
科研通AI2S应助Drwenlu采纳,获得10
53秒前
orixero应助gr采纳,获得10
54秒前
1分钟前
gr发布了新的文献求助10
1分钟前
Singularity应助帮帮我好吗采纳,获得10
1分钟前
Kevin完成签到,获得积分10
1分钟前
violetlishu完成签到 ,获得积分10
1分钟前
无悔完成签到 ,获得积分10
2分钟前
2分钟前
颖宝老公发布了新的文献求助10
2分钟前
Singularity应助帮帮我好吗采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
毕个业完成签到 ,获得积分10
3分钟前
SciKid524完成签到 ,获得积分10
3分钟前
zhdjj完成签到 ,获得积分10
3分钟前
科研通AI2S应助Migue采纳,获得10
3分钟前
是猪不是猫完成签到,获得积分10
4分钟前
JL完成签到 ,获得积分10
4分钟前
Hasee完成签到 ,获得积分10
4分钟前
Singularity举报繁馥然求助涉嫌违规
5分钟前
5分钟前
阿巴完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
CodeCraft应助lll采纳,获得10
6分钟前
Jenny发布了新的文献求助10
6分钟前
隐形曼青应助石乘云采纳,获得10
6分钟前
6分钟前
hh完成签到 ,获得积分10
7分钟前
DJ_Tokyo完成签到,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137034
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784270
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625522
版权声明 600999