Reinforcement Learning Applied to Hexapod Robot Locomotion: An Overview

六足动物 强化学习 机器人 计算机科学 背景(考古学) 人工智能 步行机器人 钢筋 步态 工程类 生理学 结构工程 生物 古生物学
作者
Espinosa Jorge,Efrén Gorrostieta-Hurtado,Vargas-Soto Emilio,Ramos-Arreguín Juan Manuel
出处
期刊:Springer eBooks [Springer Nature]
卷期号:: 185-201
标识
DOI:10.1007/978-3-030-62554-2_14
摘要

Six-legged robots are very useful in environments with obstacles of a size comparable to its own. However, the locomotion problem of hexapod robots is complex to solve due to the number of degrees of freedom and unknown environments. Nevertheless, the problem definition of Reinforcement Learning fits naturally for solving the robot locomotion problem. Reinforcement Learning has acquired great relevance in the last decade since it has achieved human-level control for specific tasks. This article presents an overview of Reinforcement Learning methods that have been successfully applied to the six-legged robot locomotion problem. First, a description and some achievements of reinforcement learning will be introduced, followed by examples of hexapod robots throughout history focusing on their locomotion systems. Secondly, the locomotion problem for a six-legged hexapod robot will be defined, with special attention to both, the gait and leg motion planning. Thirdly, the classical framework of reinforcement learning will be introduced and the Q-learning algorithm, which is one of the most used Reinforcement Learning algorithms in this context, will be revised. Finally, reinforcement learning methods applied to six-legged robot locomotion will be extensively discussed followed by open questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
顾矜应助clamon采纳,获得10
1秒前
2秒前
haizz完成签到 ,获得积分10
2秒前
3秒前
可耐的万言完成签到 ,获得积分10
4秒前
4秒前
ZLY发布了新的文献求助10
4秒前
bofu发布了新的文献求助30
5秒前
慕容飞凤发布了新的文献求助10
5秒前
丘比特应助YXH采纳,获得10
5秒前
5秒前
6秒前
6秒前
我的文献呢应助lf采纳,获得20
6秒前
情怀应助Mountain_Y采纳,获得30
6秒前
四月完成签到,获得积分10
7秒前
鲑鱼完成签到 ,获得积分10
7秒前
8秒前
8秒前
次替替完成签到,获得积分10
9秒前
星点发布了新的文献求助10
9秒前
9秒前
Coral.发布了新的文献求助10
10秒前
bofu发布了新的文献求助30
10秒前
情怀应助dgq_81采纳,获得10
10秒前
11秒前
zsxml发布了新的文献求助10
11秒前
11秒前
wanci应助稳重依风采纳,获得10
11秒前
11秒前
善学以致用应助熬夜拜拜采纳,获得10
11秒前
小二郎应助score17采纳,获得10
12秒前
13秒前
Hello应助沉默的夏天采纳,获得10
13秒前
HopeSQ发布了新的文献求助10
14秒前
ouwen发布了新的文献求助10
14秒前
14秒前
Youth发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956302
求助须知:如何正确求助?哪些是违规求助? 3502493
关于积分的说明 11108085
捐赠科研通 3233179
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870515
科研通“疑难数据库(出版商)”最低求助积分说明 802105