Deep Reinforcement Learning for Joint Channel Selection and Power Control in D2D Networks

计算机科学 强化学习 可扩展性 信道状态信息 功率控制 频道(广播) 发射机功率输出 吞吐量 计算机网络 干扰(通信) 选择算法 分布式计算 选择(遗传算法) 数学优化 功率(物理) 无线 人工智能 电信 数学 数据库 物理 量子力学 发射机
作者
Junjie Tan,Ying‐Chang Liang,Lin Zhang,Gang Feng
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1363-1378 被引量:82
标识
DOI:10.1109/twc.2020.3032991
摘要

Device-to-device (D2D) technology, which allows direct communications between proximal devices, is widely acknowledged as a promising candidate to alleviate the mobile traffic explosion problem. In this paper, we consider an overlay D2D network, in which multiple D2D pairs coexist on several orthogonal spectrum bands, i.e., channels. Due to spectrum scarcity, the number of D2D pairs is typically more than that of available channels, and thus multiple D2D pairs may use a single channel simultaneously. This may lead to severe co-channel interference and degrade network performance. To deal with this issue, we formulate a joint channel selection and power control optimization problem, with the aim to maximize the weighted-sum-rate (WSR) of the D2D network. Unfortunately, this problem is non-convex and NP-hard. To solve this problem, we first adopt the state-of-art fractional programming (FP) technique and develop an FP-based algorithm to obtain a near-optimal solution. However, the FP-based algorithm requires instantaneous global channel state information (CSI) for centralized processing, resulting in poor scalability and prohibitively high signalling overheads. Therefore, we further propose a distributed deep reinforcement learning (DRL)-based scheme, with which D2D pairs can autonomously optimize channel selection and transmit power by only exploiting local information and outdated nonlocal information. Compared with the FP-based algorithm, the DRL-based scheme can achieve better scalability and reduce signalling overheads significantly. Simulation results demonstrate that even without instantaneous global CSI, the performance of the DRL-based scheme can approach closely to that of the FP-based algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
坚强嚣完成签到,获得积分20
2秒前
fuws发布了新的文献求助10
2秒前
3秒前
3秒前
水清木华完成签到,获得积分10
4秒前
天天快乐应助大力的忆霜采纳,获得10
5秒前
要笑发布了新的文献求助10
7秒前
bailulu发布了新的文献求助10
8秒前
pan发布了新的文献求助10
8秒前
大模型应助冰柠檬采纳,获得10
9秒前
SciGPT应助蛰伏的小宇宙采纳,获得10
10秒前
syj完成签到,获得积分10
11秒前
11秒前
Doct发布了新的文献求助10
13秒前
14秒前
15秒前
天天完成签到,获得积分10
16秒前
要笑完成签到,获得积分10
16秒前
小猫多鱼完成签到,获得积分10
16秒前
16秒前
小馒完成签到 ,获得积分10
17秒前
Su73发布了新的文献求助10
17秒前
18秒前
ChuanjiWu完成签到,获得积分10
18秒前
YANA完成签到,获得积分10
19秒前
20秒前
Liu发布了新的文献求助10
21秒前
22秒前
23秒前
23秒前
23秒前
科研废物完成签到,获得积分10
26秒前
27秒前
wwww完成签到,获得积分10
28秒前
夏来应助陌路孤星采纳,获得10
28秒前
28秒前
张子翀完成签到,获得积分10
28秒前
29秒前
Hexagram发布了新的文献求助10
29秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980027
求助须知:如何正确求助?哪些是违规求助? 3524131
关于积分的说明 11219994
捐赠科研通 3261576
什么是DOI,文献DOI怎么找? 1800726
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232