Deep Reinforcement Learning for Joint Channel Selection and Power Control in D2D Networks

计算机科学 强化学习 可扩展性 信道状态信息 功率控制 频道(广播) 发射机功率输出 吞吐量 计算机网络 干扰(通信) 选择算法 分布式计算 选择(遗传算法) 数学优化 功率(物理) 无线 人工智能 电信 数学 物理 发射机 量子力学 数据库
作者
Junjie Tan,Ying‐Chang Liang,Lin Zhang,Gang Feng
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1363-1378 被引量:82
标识
DOI:10.1109/twc.2020.3032991
摘要

Device-to-device (D2D) technology, which allows direct communications between proximal devices, is widely acknowledged as a promising candidate to alleviate the mobile traffic explosion problem. In this paper, we consider an overlay D2D network, in which multiple D2D pairs coexist on several orthogonal spectrum bands, i.e., channels. Due to spectrum scarcity, the number of D2D pairs is typically more than that of available channels, and thus multiple D2D pairs may use a single channel simultaneously. This may lead to severe co-channel interference and degrade network performance. To deal with this issue, we formulate a joint channel selection and power control optimization problem, with the aim to maximize the weighted-sum-rate (WSR) of the D2D network. Unfortunately, this problem is non-convex and NP-hard. To solve this problem, we first adopt the state-of-art fractional programming (FP) technique and develop an FP-based algorithm to obtain a near-optimal solution. However, the FP-based algorithm requires instantaneous global channel state information (CSI) for centralized processing, resulting in poor scalability and prohibitively high signalling overheads. Therefore, we further propose a distributed deep reinforcement learning (DRL)-based scheme, with which D2D pairs can autonomously optimize channel selection and transmit power by only exploiting local information and outdated nonlocal information. Compared with the FP-based algorithm, the DRL-based scheme can achieve better scalability and reduce signalling overheads significantly. Simulation results demonstrate that even without instantaneous global CSI, the performance of the DRL-based scheme can approach closely to that of the FP-based algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀棒棒糖完成签到 ,获得积分10
刚刚
然来溪完成签到 ,获得积分10
1秒前
5秒前
qianci2009完成签到,获得积分0
6秒前
sadh2完成签到 ,获得积分10
6秒前
xun完成签到,获得积分20
6秒前
6秒前
9秒前
崔灿完成签到 ,获得积分10
9秒前
含蓄的魔镜完成签到 ,获得积分10
10秒前
hhh2018687完成签到,获得积分10
10秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
luffy完成签到 ,获得积分10
14秒前
jjjjjj发布了新的文献求助30
14秒前
federish完成签到 ,获得积分10
19秒前
健脊护柱完成签到 ,获得积分10
22秒前
蓝莓芝士完成签到 ,获得积分10
23秒前
Yuki完成签到 ,获得积分10
25秒前
grace完成签到 ,获得积分10
25秒前
Skyllne完成签到 ,获得积分10
26秒前
LONG完成签到 ,获得积分10
27秒前
LJ_2完成签到 ,获得积分10
28秒前
xue完成签到 ,获得积分10
29秒前
wangsiyuan发布了新的文献求助10
30秒前
jjjjjj完成签到,获得积分10
31秒前
嗡嗡嗡完成签到 ,获得积分10
32秒前
白华苍松发布了新的文献求助20
33秒前
观妙散人完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
38秒前
巫巫巫巫巫完成签到 ,获得积分0
41秒前
害怕的小刺猬完成签到 ,获得积分10
41秒前
殷勤的凝海完成签到 ,获得积分10
43秒前
CipherSage应助白华苍松采纳,获得10
43秒前
mmiww完成签到,获得积分10
51秒前
53秒前
冷静冰萍完成签到 ,获得积分10
54秒前
kelien1205完成签到 ,获得积分10
55秒前
lkgxwpf发布了新的文献求助10
57秒前
laber完成签到,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516426
求助须知:如何正确求助?哪些是违规求助? 4609379
关于积分的说明 14514873
捐赠科研通 4546050
什么是DOI,文献DOI怎么找? 2491063
邀请新用户注册赠送积分活动 1472853
关于科研通互助平台的介绍 1444767