Deep Reinforcement Learning for Joint Channel Selection and Power Control in D2D Networks

计算机科学 强化学习 可扩展性 信道状态信息 功率控制 频道(广播) 发射机功率输出 吞吐量 计算机网络 干扰(通信) 选择算法 分布式计算 选择(遗传算法) 数学优化 功率(物理) 无线 人工智能 电信 数学 物理 发射机 量子力学 数据库
作者
Junjie Tan,Ying‐Chang Liang,Lin Zhang,Gang Feng
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1363-1378 被引量:82
标识
DOI:10.1109/twc.2020.3032991
摘要

Device-to-device (D2D) technology, which allows direct communications between proximal devices, is widely acknowledged as a promising candidate to alleviate the mobile traffic explosion problem. In this paper, we consider an overlay D2D network, in which multiple D2D pairs coexist on several orthogonal spectrum bands, i.e., channels. Due to spectrum scarcity, the number of D2D pairs is typically more than that of available channels, and thus multiple D2D pairs may use a single channel simultaneously. This may lead to severe co-channel interference and degrade network performance. To deal with this issue, we formulate a joint channel selection and power control optimization problem, with the aim to maximize the weighted-sum-rate (WSR) of the D2D network. Unfortunately, this problem is non-convex and NP-hard. To solve this problem, we first adopt the state-of-art fractional programming (FP) technique and develop an FP-based algorithm to obtain a near-optimal solution. However, the FP-based algorithm requires instantaneous global channel state information (CSI) for centralized processing, resulting in poor scalability and prohibitively high signalling overheads. Therefore, we further propose a distributed deep reinforcement learning (DRL)-based scheme, with which D2D pairs can autonomously optimize channel selection and transmit power by only exploiting local information and outdated nonlocal information. Compared with the FP-based algorithm, the DRL-based scheme can achieve better scalability and reduce signalling overheads significantly. Simulation results demonstrate that even without instantaneous global CSI, the performance of the DRL-based scheme can approach closely to that of the FP-based algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
麦冬粑粑完成签到,获得积分10
刚刚
Adzuki0812完成签到,获得积分10
1秒前
Kriten完成签到,获得积分10
1秒前
知行合一完成签到,获得积分10
1秒前
2秒前
姜姜完成签到,获得积分10
2秒前
英俊的铭应助霸气的怜珊采纳,获得10
2秒前
爆杀小白鼠完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
超哥完成签到,获得积分10
4秒前
飞飞完成签到,获得积分10
4秒前
qqwxp完成签到,获得积分10
4秒前
4秒前
婷刘完成签到,获得积分10
4秒前
谦让碧菡完成签到,获得积分10
5秒前
guohuameike完成签到,获得积分10
5秒前
顺利灭绝完成签到,获得积分20
5秒前
单身的乐瑶完成签到,获得积分10
6秒前
Moonchild发布了新的文献求助10
6秒前
萌~Lucky完成签到,获得积分10
7秒前
喜喜完成签到,获得积分20
7秒前
8秒前
8秒前
zgrmws应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
fff应助科研通管家采纳,获得10
8秒前
Tengami应助科研通管家采纳,获得10
8秒前
幸福大碗完成签到,获得积分10
8秒前
zgrmws应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
Criminology34应助科研通管家采纳,获得10
9秒前
十一完成签到,获得积分10
9秒前
9秒前
laber应助guest采纳,获得50
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
小马甲应助受伤的德天采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664939
求助须知:如何正确求助?哪些是违规求助? 4873377
关于积分的说明 15110105
捐赠科研通 4823973
什么是DOI,文献DOI怎么找? 2582614
邀请新用户注册赠送积分活动 1536518
关于科研通互助平台的介绍 1495130