Deep Reinforcement Learning for Joint Channel Selection and Power Control in D2D Networks

计算机科学 强化学习 可扩展性 信道状态信息 功率控制 频道(广播) 发射机功率输出 吞吐量 计算机网络 干扰(通信) 选择算法 分布式计算 选择(遗传算法) 数学优化 功率(物理) 无线 人工智能 电信 数学 物理 发射机 量子力学 数据库
作者
Junjie Tan,Ying‐Chang Liang,Lin Zhang,Gang Feng
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1363-1378 被引量:82
标识
DOI:10.1109/twc.2020.3032991
摘要

Device-to-device (D2D) technology, which allows direct communications between proximal devices, is widely acknowledged as a promising candidate to alleviate the mobile traffic explosion problem. In this paper, we consider an overlay D2D network, in which multiple D2D pairs coexist on several orthogonal spectrum bands, i.e., channels. Due to spectrum scarcity, the number of D2D pairs is typically more than that of available channels, and thus multiple D2D pairs may use a single channel simultaneously. This may lead to severe co-channel interference and degrade network performance. To deal with this issue, we formulate a joint channel selection and power control optimization problem, with the aim to maximize the weighted-sum-rate (WSR) of the D2D network. Unfortunately, this problem is non-convex and NP-hard. To solve this problem, we first adopt the state-of-art fractional programming (FP) technique and develop an FP-based algorithm to obtain a near-optimal solution. However, the FP-based algorithm requires instantaneous global channel state information (CSI) for centralized processing, resulting in poor scalability and prohibitively high signalling overheads. Therefore, we further propose a distributed deep reinforcement learning (DRL)-based scheme, with which D2D pairs can autonomously optimize channel selection and transmit power by only exploiting local information and outdated nonlocal information. Compared with the FP-based algorithm, the DRL-based scheme can achieve better scalability and reduce signalling overheads significantly. Simulation results demonstrate that even without instantaneous global CSI, the performance of the DRL-based scheme can approach closely to that of the FP-based algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助LiuZhe采纳,获得10
1秒前
1秒前
sswbzh应助顺心的大碗采纳,获得100
1秒前
2秒前
3秒前
heehee发布了新的文献求助10
3秒前
研友_VZG7GZ应助聪明的二休采纳,获得10
3秒前
远山有灯完成签到,获得积分10
3秒前
彪壮的煎蛋完成签到,获得积分10
4秒前
4秒前
4秒前
wjy完成签到,获得积分10
4秒前
希望天下0贩的0应助青云采纳,获得10
4秒前
梵凡发布了新的文献求助10
5秒前
嘟嘟杜发布了新的文献求助10
5秒前
6秒前
6秒前
在水一方应助顺利芹菜采纳,获得10
6秒前
6秒前
花花发布了新的文献求助10
7秒前
7秒前
7秒前
Neol完成签到,获得积分20
7秒前
陈哈哈完成签到,获得积分10
7秒前
111关闭了111文献求助
8秒前
cruise完成签到,获得积分10
8秒前
晚意完成签到,获得积分20
9秒前
是真名士自风刘女士完成签到,获得积分10
9秒前
ChiariRay发布了新的文献求助10
10秒前
511发布了新的文献求助10
10秒前
11秒前
wjq发布了新的文献求助10
11秒前
田様应助生而狂野天逸采纳,获得10
11秒前
田様应助ritakashi采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
大气靳发布了新的文献求助10
12秒前
12秒前
如意蓉发布了新的文献求助10
12秒前
Neol发布了新的文献求助30
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425