Deep learning‐based radiomics predicts response to chemotherapy in colorectal liver metastases

无线电技术 实体瘤疗效评价标准 医学 接收机工作特性 癌胚抗原 化疗 结直肠癌 回顾性队列研究 肿瘤科 置信区间 进行性疾病 放射科 内科学 癌症
作者
Jingwei Wei,Cheng Jin,Dongsheng Gu,Fan Chai,Nan Hong,Yi Wang,Jie Tian
出处
期刊:Medical Physics [Wiley]
卷期号:48 (1): 513-522 被引量:37
标识
DOI:10.1002/mp.14563
摘要

Purpose The purpose of this study was to develop and validate a deep learning (DL)‐based radiomics model to predict the response to chemotherapy in colorectal liver metastases (CRLM). Methods In this retrospective study, we enrolled 192 patients diagnosed with CRLM who received first‐line chemotherapy and were followed by response assessment. Tumor response was identified according to the Response Evaluation Criteria in Solid Tumors (RECIST). Contrast‐enhanced multidetector computed tomography (MDCT) images were fed as inputs of the ResNet10‐based DL radiomics model, and the possibility of response was predicted as the output. The final combined DL radiomics model was constructed by integrating the response‐related clinical factors and the developed DL radiomics signature. A time‐independent validation cohort (n = 48) was extracted from the 192 patients to evaluate the DL model with area under the receiver operating characteristic curve (AUC), specificity, and sensitivity. Meanwhile, a traditional radiomics model was constructed using least absolute shrinkage and selection operator (lasso) as comparisons with the DL‐based model. Results According to RECIST criteria, 131 patients were identified as responders with complete response, partial response, and stable disease, while 61 patients were nonresponders with progression disease. The selected predictive clinical factor turned out to be the carcinoembryonic antigen (CEA) level with AUC of 0.489 (95% confidence interval [CI], 0.380–0.599) and 0.558 (95% CI, 0.374–0.741) in the training and validation cohorts, respectively. The DL‐based model provided better performance than the traditional classifier‐based radiomics model with significantly higher AUC (training: 0.903 [95% CI, 0.851–0.955] vs 0.745 [95% CI, 0.659–0.831]; validation: 0.820 [95% CI, 0.681–0.959] vs 0.598 [95% CI, 0.422–0.774]). The combination of DL‐based model with the CEA level provided slightly increased performance with AUC of 0.935 [95% CI, 0.897–0.973] in the training cohort and 0.830 [95% CI, 0.688‐0.973] in the validation cohort. Conclusions The developed DL‐based radiomics model could improve the efficiency to predict the response to chemotherapy in CRLM, which may assist in subsequent personalized treatment decision‐making in CRLM management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
虎子完成签到 ,获得积分10
1秒前
wtzhang16完成签到,获得积分10
2秒前
斯文败类应助Claudplz采纳,获得10
3秒前
3秒前
乐生发布了新的文献求助10
3秒前
忧郁绣连应助旭宝儿采纳,获得10
4秒前
Shirley应助旭宝儿采纳,获得10
4秒前
orixero应助旭宝儿采纳,获得10
4秒前
田様应助筋筋子采纳,获得10
5秒前
小爽完成签到,获得积分10
5秒前
明天肯定学习完成签到,获得积分10
5秒前
凤凤发布了新的文献求助10
5秒前
田様应助害羞外套采纳,获得10
6秒前
6秒前
麦乐迪发布了新的文献求助10
6秒前
shenhai发布了新的文献求助10
7秒前
win完成签到,获得积分20
8秒前
狂奔蚂蚁32号完成签到,获得积分10
8秒前
走走走发布了新的文献求助10
8秒前
uuuu完成签到 ,获得积分10
9秒前
李爱国应助科研靓仔采纳,获得10
10秒前
shaheen发布了新的文献求助10
10秒前
Hammerdai完成签到,获得积分10
11秒前
zheshi1完成签到,获得积分10
11秒前
12秒前
uuuu关注了科研通微信公众号
13秒前
14秒前
缓慢海蓝完成签到 ,获得积分10
15秒前
走走走完成签到,获得积分20
17秒前
zbg完成签到 ,获得积分10
18秒前
19秒前
阳光傲菡完成签到 ,获得积分10
19秒前
20秒前
我是老大应助早睡早起采纳,获得10
20秒前
害羞外套发布了新的文献求助10
21秒前
TANG完成签到,获得积分10
21秒前
22秒前
研友_xnEOX8完成签到,获得积分10
23秒前
风的季节完成签到,获得积分0
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137308
求助须知:如何正确求助?哪些是违规求助? 2788393
关于积分的说明 7786079
捐赠科研通 2444547
什么是DOI,文献DOI怎么找? 1299936
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023