Deep learning‐based radiomics predicts response to chemotherapy in colorectal liver metastases

无线电技术 实体瘤疗效评价标准 医学 接收机工作特性 癌胚抗原 化疗 结直肠癌 回顾性队列研究 肿瘤科 置信区间 进行性疾病 放射科 内科学 癌症
作者
Jingwei Wei,Cheng Jin,Dongsheng Gu,Fan Chai,Nan Hong,Yi Wang,Jie Tian
出处
期刊:Medical Physics [Wiley]
卷期号:48 (1): 513-522 被引量:46
标识
DOI:10.1002/mp.14563
摘要

Purpose The purpose of this study was to develop and validate a deep learning (DL)‐based radiomics model to predict the response to chemotherapy in colorectal liver metastases (CRLM). Methods In this retrospective study, we enrolled 192 patients diagnosed with CRLM who received first‐line chemotherapy and were followed by response assessment. Tumor response was identified according to the Response Evaluation Criteria in Solid Tumors (RECIST). Contrast‐enhanced multidetector computed tomography (MDCT) images were fed as inputs of the ResNet10‐based DL radiomics model, and the possibility of response was predicted as the output. The final combined DL radiomics model was constructed by integrating the response‐related clinical factors and the developed DL radiomics signature. A time‐independent validation cohort (n = 48) was extracted from the 192 patients to evaluate the DL model with area under the receiver operating characteristic curve (AUC), specificity, and sensitivity. Meanwhile, a traditional radiomics model was constructed using least absolute shrinkage and selection operator (lasso) as comparisons with the DL‐based model. Results According to RECIST criteria, 131 patients were identified as responders with complete response, partial response, and stable disease, while 61 patients were nonresponders with progression disease. The selected predictive clinical factor turned out to be the carcinoembryonic antigen (CEA) level with AUC of 0.489 (95% confidence interval [CI], 0.380–0.599) and 0.558 (95% CI, 0.374–0.741) in the training and validation cohorts, respectively. The DL‐based model provided better performance than the traditional classifier‐based radiomics model with significantly higher AUC (training: 0.903 [95% CI, 0.851–0.955] vs 0.745 [95% CI, 0.659–0.831]; validation: 0.820 [95% CI, 0.681–0.959] vs 0.598 [95% CI, 0.422–0.774]). The combination of DL‐based model with the CEA level provided slightly increased performance with AUC of 0.935 [95% CI, 0.897–0.973] in the training cohort and 0.830 [95% CI, 0.688‐0.973] in the validation cohort. Conclusions The developed DL‐based radiomics model could improve the efficiency to predict the response to chemotherapy in CRLM, which may assist in subsequent personalized treatment decision‐making in CRLM management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助喵哥233采纳,获得10
1秒前
再睡十分钟完成签到,获得积分10
1秒前
Aurora发布了新的文献求助10
1秒前
共享精神应助小易采纳,获得10
2秒前
3秒前
小蘑菇应助ZY采纳,获得10
4秒前
4秒前
4秒前
暖光完成签到,获得积分10
7秒前
9秒前
xiao双月发布了新的文献求助10
9秒前
majx发布了新的文献求助10
10秒前
12秒前
烟花应助树心采纳,获得30
14秒前
15秒前
aaaaa发布了新的文献求助10
16秒前
Gunsale完成签到,获得积分10
17秒前
文艺的语蝶完成签到,获得积分10
19秒前
19秒前
20秒前
一条咸鱼完成签到,获得积分10
21秒前
喵哥233发布了新的文献求助10
23秒前
cc发布了新的文献求助10
25秒前
8y24dp发布了新的文献求助10
26秒前
桐桐应助科研通管家采纳,获得10
26秒前
Ava应助科研通管家采纳,获得10
26秒前
酷波er应助科研通管家采纳,获得10
26秒前
Lucas应助科研通管家采纳,获得10
27秒前
劲秉应助科研通管家采纳,获得10
27秒前
ding应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
劲秉应助科研通管家采纳,获得10
27秒前
小蘑菇应助科研通管家采纳,获得10
27秒前
劲秉应助科研通管家采纳,获得10
27秒前
情怀应助科研通管家采纳,获得10
27秒前
lilylian应助活力的语堂采纳,获得10
27秒前
29秒前
30秒前
小唐要加油完成签到,获得积分10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670038
求助须知:如何正确求助?哪些是违规求助? 3227414
关于积分的说明 9775447
捐赠科研通 2937677
什么是DOI,文献DOI怎么找? 1609410
邀请新用户注册赠送积分活动 760339
科研通“疑难数据库(出版商)”最低求助积分说明 735792